Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403-1253, USA.
CAMCOR-Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, OR, 97403-1443, USA.
Angew Chem Int Ed Engl. 2017 May 2;56(19):5237-5241. doi: 10.1002/anie.201700935. Epub 2017 Apr 4.
Nanoscale carbon-rich molecular architectures are not only aesthetically appealing but also of practical importance for energy and biomedical technologies. Herein, we report the synthesis of cyclic-oligophenylene-based nanopropeller 1 by using an efficient synthon strategy involving sequential intramolecular bisboronate homocoupling and reductive aromatization by H SnCl . The nanopropeller molecules pack into a layered hexagonal lattice featuring long-ranged nano-sized channels and a total guest-accessible volume of 48 %, as revealed by X-ray diffraction studies. We suggest that such a solid-state arrangement is determined by the interplay between the propeller architecture and the intermolecular van der Waals interactions.
纳米级富碳分子结构不仅具有美学吸引力,而且在能源和生物医学技术方面具有实际重要性。在此,我们通过使用涉及顺序分子内双硼酸酯同偶联和 H 2SnCl 4还原芳构化的有效合成子策略,报告了基于环状寡聚对苯撑的纳米推进器 1 的合成。X 射线衍射研究表明,纳米推进器分子组装成具有长程纳米尺寸通道和总可访问客体体积为 48%的层状六方晶格。我们认为这种固态排列是由推进器结构和分子间范德华相互作用的相互作用决定的。