Xu Youzhi, von Delius Max
Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):559-573. doi: 10.1002/anie.201906069. Epub 2019 Sep 17.
Since 1996, a growing number of strained macrocycles, comprising only sp - or sp-hybridized carbon atoms within the ring, have become synthetically accessible, with the [n]cycloparaphenyleneacetylenes (CPPAs) and the [n]cycloparaphenylenes (CPPs) being the most prominent examples. Now that robust and relatively general synthetic routes toward a diverse range of nanohoop structures have become available, the research focus is beginning to shift towards the exploration of their properties and applications. From a supramolecular chemistry perspective, these macrocycles offer unique opportunities as a result of their near-perfect circular shape, the unusually high degree of shape-persistence, and the presence of both convex and concave π-faces. In this Minireview, we give an overview on the use of strained carbon-rich nanohoops in host-guest chemistry, the preparation of mechanically interlocked architectures, and crystal engineering.
自1996年以来,越来越多的张力大环化合物已可通过合成方法获得,这些大环化合物的环内仅包含sp或sp杂化的碳原子,其中[n]环对亚苯基乙炔(CPPA)和[n]环对亚苯撑(CPP)是最突出的例子。既然已经有了针对各种纳米环结构的稳健且相对通用的合成路线,研究重点开始转向对其性质和应用的探索。从超分子化学的角度来看,这些大环化合物因其近乎完美的圆形形状、异常高的形状持久性以及同时存在凸面和凹面的π面而提供了独特的机会。在本综述中,我们概述了富碳张力纳米环在主客体化学、机械互锁结构的制备以及晶体工程中的应用。