Suppr超能文献

利用蛋白质数据库中的结构知识指导在序列空间中寻找潜在的宿主-微生物蛋白质相互作用:应用于结核分枝杆菌。

Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: application to Mycobacterium tuberculosis.

作者信息

Mahajan Gaurang, Mande Shekhar C

机构信息

National Centre for Cell Science, Ganeshkhind, Pune, 411 007, India.

Indian Institute of Science Education and Research, Pashan, Pune, 411 008, India.

出版信息

BMC Bioinformatics. 2017 Apr 4;18(1):201. doi: 10.1186/s12859-017-1550-y.

Abstract

BACKGROUND

A comprehensive map of the human-M. tuberculosis (MTB) protein interactome would help fill the gaps in our understanding of the disease, and computational prediction can aid and complement experimental studies towards this end. Several sequence-based in silico approaches tap the existing data on experimentally validated protein-protein interactions (PPIs); these PPIs serve as templates from which novel interactions between pathogen and host are inferred. Such comparative approaches typically make use of local sequence alignment, which, in the absence of structural details about the interfaces mediating the template interactions, could lead to incorrect inferences, particularly when multi-domain proteins are involved.

RESULTS

We propose leveraging the domain-domain interaction (DDI) information in PDB complexes to score and prioritize candidate PPIs between host and pathogen proteomes based on targeted sequence-level comparisons. Our method picks out a small set of human-MTB protein pairs as candidates for physical interactions, and the use of functional meta-data suggests that some of them could contribute to the in vivo molecular cross-talk between pathogen and host that regulates the course of the infection. Further, we present numerical data for Pfam domain families that highlights interaction specificity on the domain level. Not every instance of a pair of domains, for which interaction evidence has been found in a few instances (i.e. structures), is likely to functionally interact. Our sorting approach scores candidates according to how "distant" they are in sequence space from known examples of DDIs (templates). Thus, it provides a natural way to deal with the heterogeneity in domain-level interactions.

CONCLUSIONS

Our method represents a more informed application of local alignment to the sequence-based search for potential human-microbial interactions that uses available PPI data as a prior. Our approach is somewhat limited in its sensitivity by the restricted size and diversity of the template dataset, but, given the rapid accumulation of solved protein complex structures, its scope and utility are expected to keep steadily improving.

摘要

背景

人类与结核分枝杆菌(MTB)蛋白质相互作用组的全面图谱将有助于填补我们对该疾病理解上的空白,而计算预测有助于并补充为此目的进行的实验研究。几种基于序列的计算机方法利用了关于经实验验证的蛋白质 - 蛋白质相互作用(PPI)的现有数据;这些PPI用作推断病原体与宿主之间新相互作用的模板。这种比较方法通常使用局部序列比对,在缺乏介导模板相互作用的界面结构细节的情况下,可能会导致错误的推断,特别是当涉及多结构域蛋白质时。

结果

我们建议利用PDB复合物中的结构域 - 结构域相互作用(DDI)信息,通过有针对性的序列水平比较,对宿主和病原体蛋白质组之间的候选PPI进行评分和排序。我们的方法挑选出一小部分人 - MTB蛋白质对作为物理相互作用的候选者,功能元数据的使用表明其中一些可能有助于病原体与宿主之间的体内分子串扰,从而调节感染过程。此外,我们提供了针对Pfam结构域家族的数值数据,突出了结构域水平上的相互作用特异性。并非在少数实例(即结构)中发现有相互作用证据的每一对结构域实例都可能在功能上相互作用。我们的排序方法根据候选者在序列空间中与已知DDI(模板)实例的“距离”对其进行评分。因此,它提供了一种处理结构域水平相互作用异质性的自然方法。

结论

我们的方法代表了在基于序列的潜在人类 - 微生物相互作用搜索中更明智地应用局部比对,该搜索使用可用的PPI数据作为先验。我们的方法在敏感性方面受到模板数据集大小和多样性受限的一定限制,但是,鉴于已解析蛋白质复合物结构的快速积累,其范围和效用有望不断稳步提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/5379762/257bb8e7c858/12859_2017_1550_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验