Suppr超能文献

转运体与养分胁迫下白杨幼苗中特定菌株促进植物生长有关。

Transportome Is Linked to Strain-Specific Plant Growth Promotion in Aspen Seedlings under Nutrient Stress.

作者信息

Shinde Shalaka, Cumming Jonathan R, Collart Frank R, Noirot Philippe H, Larsen Peter E

机构信息

Biosciences Division, Argonne National Laboratory Lemont, IL, USA.

Department of Biology, West Virginia University Morgantown, WV, USA.

出版信息

Front Plant Sci. 2017 Mar 21;8:348. doi: 10.3389/fpls.2017.00348. eCollection 2017.

Abstract

Diverse communities of bacteria colonize plant roots and the rhizosphere. Many of these rhizobacteria are symbionts and provide plant growth promotion (PGP) services, protecting the plant from biotic and abiotic stresses and increasing plant productivity by providing access to nutrients that would otherwise be unavailable to roots. In return, these symbiotic bacteria receive photosynthetically-derived carbon (C), in the form of sugars and organic acids, from plant root exudates. PGP activities have been characterized for a variety of forest tree species and are important in C cycling and sequestration in terrestrial ecosystems. The molecular mechanisms of these PGP activities, however, are less well-known. In a previous analysis of genomes, we found that the bacterial transportome, the aggregate activity of a bacteria's transmembrane transporters, was most predictive for the ecological niche of Pseudomonads in the rhizosphere. Here, we used Michx. (trembling aspen) seedlings inoculated with one of three strains (Pf0-1, SBW25, and WH6) and one (Pf-5) as a laboratory model to further investigate the relationships between the predicted transportomic capacity of a bacterial strain and its observed PGP effects in laboratory cultures. Conditions of low nitrogen (N) or low phosphorus (P) availability and the corresponding replete media conditions were investigated. We measured phenotypic and biochemical parameters of seedlings and correlated strain-specific transportomic capacities with seedling phenotype to predict the strain and nutrient environment-specific transporter functions that lead to experimentally observed, strain, and media-specific PGP activities and the capacity to protect plants against nutrient stress. These predicted transportomic functions fall in three groups: (i) transport of compounds that modulate aspen seedling root architecture, (ii) transport of compounds that help to mobilize nutrients for aspen roots, and (iii) transporters that enable bacterial acquisition of C sources from seedling root exudates. These predictions point to specific molecular mechanisms of PGP activities that can be directly tested through future, hypothesis-driven biological experiments.

摘要

多种细菌群落定殖于植物根系和根际。这些根际细菌中有许多是共生体,提供促进植物生长(PGP)的服务,保护植物免受生物和非生物胁迫,并通过提供根系原本无法获取的养分来提高植物生产力。作为回报,这些共生细菌从植物根系分泌物中获得以糖和有机酸形式存在的光合衍生碳(C)。PGP活性已在多种森林树种中得到表征,并且在陆地生态系统的碳循环和固存中很重要。然而,这些PGP活性的分子机制却鲜为人知。在之前的基因组分析中,我们发现细菌转运体组,即细菌跨膜转运蛋白的总活性,对根际假单胞菌的生态位最具预测性。在这里,我们使用接种了三种菌株(Pf0-1、SBW25和WH6)之一和一种菌株(Pf-5)的颤杨(Michx.)幼苗作为实验室模型,进一步研究细菌菌株预测的转运体组能力与其在实验室培养中观察到的PGP效应之间的关系。研究了低氮(N)或低磷(P)可用性条件以及相应的充足培养基条件。我们测量了颤杨幼苗的表型和生化参数,并将菌株特异性转运体组能力与幼苗表型相关联,以预测导致实验观察到的、特定菌株和培养基的PGP活性以及保护植物免受养分胁迫能力的菌株和养分环境特异性转运蛋白功能。这些预测的转运体组功能分为三组:(i)调节颤杨幼苗根系结构的化合物的转运,(ii)有助于为颤杨根系动员养分的化合物的转运,以及(iii)使细菌能够从幼苗根系分泌物中获取碳源的转运蛋白。这些预测指出了PGP活性的特定分子机制,可通过未来基于假设的生物学实验直接进行测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5be/5359307/03290a927dd0/fpls-08-00348-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验