Suppr超能文献

解析钙离子在单个胶原原纤维机械性能中的作用。

Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils.

机构信息

Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.

Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.

出版信息

Sci Rep. 2017 Apr 5;7:46042. doi: 10.1038/srep46042.

Abstract

Collagen, the dominating material in the extracellular matrix, provides the strength, elasticity and mechanical stability to the organisms. The mechanical property of collagen is mainly dominated by its surrounding environments. However, the variation and origin of the mechanics of collagen fibril under different concentrations of calcium ions (χ) remains unknown. By using the atomic force microscopy based nanoindentation, the mechanics and structure of individual type II collagen fibril were first investigated under different χ in this study. The results demonstrate that both of the mechanical and structural properties of the collagen fibril show a prominent dependence on χ. The mechanism of χ-dependence of the collagen fibril was attributed to the chelation between collagen molecules and the calcium ions. Given the role of calcium in the pathology of osteoarthritis, the current study may cast new light on the understanding of osteoarthritis and other soft tissue hardening related diseases in the future.

摘要

胶原蛋白是细胞外基质中的主要物质,为生物体提供强度、弹性和机械稳定性。胶原蛋白的力学性能主要由其周围环境决定。然而,在不同浓度钙离子(χ)下胶原原纤维力学性质的变化和起源尚不清楚。本研究首次通过原子力显微镜纳米压痕法研究了不同 χ 下单个 II 型胶原原纤维的力学和结构。结果表明,胶原原纤维的力学和结构性能都明显依赖于 χ。胶原原纤维对 χ 的依赖性机制归因于胶原蛋白分子与钙离子的螯合作用。鉴于钙在骨关节炎发病机制中的作用,本研究可能为未来理解骨关节炎和其他与软组织硬化相关的疾病提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f37a/5380965/d25c2d6d8780/srep46042-f1.jpg

相似文献

2
Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.
Nano Lett. 2011 Feb 9;11(2):757-66. doi: 10.1021/nl103943u. Epub 2011 Jan 5.
3
Influence of fibril taper on the function of collagen to reinforce extracellular matrix.
Proc Biol Sci. 2005 Sep 22;272(1575):1979-83. doi: 10.1098/rspb.2005.3173.
6
AFM study for morphological and mechanical properties of human scleral surface.
J Nanosci Nanotechnol. 2011 Jul;11(7):6382-8. doi: 10.1166/jnn.2011.4499.
7
Viscoelastic properties of model segments of collagen molecules.
Matrix Biol. 2012 Mar;31(2):141-9. doi: 10.1016/j.matbio.2011.11.005. Epub 2011 Dec 21.
8
Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy.
Osteoarthritis Cartilage. 2012 Aug;20(8):916-22. doi: 10.1016/j.joca.2012.04.018. Epub 2012 Apr 28.
10
Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus.
Matrix Biol. 2020 Jan;85-86:47-67. doi: 10.1016/j.matbio.2019.10.001. Epub 2019 Oct 23.

引用本文的文献

1
Calcium Medronate-Based Metal-Organic Frameworks as Multifunctional Biomaterials.
Cryst Growth Des. 2025 Feb 20;25(5):1415-1422. doi: 10.1021/acs.cgd.4c01478. eCollection 2025 Mar 5.
2
dynamic visualization and evaluation of collagen degradation utilizing NIR-II fluorescence imaging in mice models.
Regen Biomater. 2025 Apr 11;12:rbaf025. doi: 10.1093/rb/rbaf025. eCollection 2025.
3
Effect of Ca on the structure of collagen fibers in sea cucumber () under low-temperature tenderization condition.
Food Chem X. 2025 Apr 8;27:102450. doi: 10.1016/j.fochx.2025.102450. eCollection 2025 Apr.
5
Alginate Conjugation Increases Toughness in Auricular Chondrocyte Seeded Collagen Hydrogels.
Bioengineering (Basel). 2023 Sep 4;10(9):1037. doi: 10.3390/bioengineering10091037.
7
Incorporation of Barium Ions into Biomaterials: Dangerous Liaison or Potential Revolution?
Materials (Basel). 2021 Oct 2;14(19):5772. doi: 10.3390/ma14195772.
8
An Alum-Free Jellyfish Treatment for Food Applications.
Front Nutr. 2021 Aug 23;8:718798. doi: 10.3389/fnut.2021.718798. eCollection 2021.
9
The Thermodynamics of Medial Vascular Calcification.
Front Cell Dev Biol. 2021 Apr 14;9:633465. doi: 10.3389/fcell.2021.633465. eCollection 2021.
10
In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery.
Materialia (Oxf). 2021 Mar;15. doi: 10.1016/j.mtla.2020.100954. Epub 2020 Nov 17.

本文引用的文献

1
Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1208-13. doi: 10.1073/pnas.1516214113. Epub 2016 Jan 19.
2
Nanoscale Swelling Heterogeneities in Type I Collagen Fibrils.
ACS Nano. 2015 Jun 23;9(6):5683-94. doi: 10.1021/nn503637q. Epub 2015 May 14.
3
Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.
Nanotechnology. 2015 Mar 20;26(11):115605. doi: 10.1088/0957-4484/26/11/115605. Epub 2015 Feb 26.
4
The effects of UV irradiation on collagen D-band revealed by atomic force microscopy.
Scanning. 2015 Mar-Apr;37(2):101-11. doi: 10.1002/sca.21185. Epub 2014 Dec 17.
5
Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.
Biophys J. 2014 Oct 21;107(8):1794-1801. doi: 10.1016/j.bpj.2014.09.003.
6
Molecular mechanics of mineralized collagen fibrils in bone.
Nat Commun. 2013;4:1724. doi: 10.1038/ncomms2720.
7
Genetics of atherosclerosis and vascular calcification go hand-in-hand.
Atherosclerosis. 2013 Jun;228(2):325-6. doi: 10.1016/j.atherosclerosis.2012.10.029. Epub 2012 Oct 11.
8
Nanomechanics of the Cartilage Extracellular Matrix.
Annu Rev Mater Res. 2011 Jul 1;41:133-168. doi: 10.1146/annurev-matsci-062910-100431.
9
Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy.
Osteoarthritis Cartilage. 2012 Aug;20(8):916-22. doi: 10.1016/j.joca.2012.04.018. Epub 2012 Apr 28.
10
Dynamic mechanical analysis of collagen fibrils at the nanoscale.
J Mech Behav Biomed Mater. 2012 Jan;5(1):165-70. doi: 10.1016/j.jmbbm.2011.08.020. Epub 2011 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验