Ziaukas Pranas, Alabdulgader Abdullah, Vainoras Alfonsas, Navickas Zenonas, Ragulskis Minvydas
Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Kaunas, Lithuania.
Prince Sultan Cardiac Center, Al Hasa, Al Hofuf, Saudi Arabia.
PLoS One. 2017 Apr 5;12(4):e0174279. doi: 10.1371/journal.pone.0174279. eCollection 2017.
This paper presents the concept of perfect matrices of Lagrange differences which are used to analyze relationships between RR and JT intervals during the bicycle ergometry exercise. The concept of the perfect matrix of Lagrange differences, its parameters, the construction of the load function and the corresponding optimization problem, the introduction of internal and external smoothing, embedding of the scalar parameter time series into the phase plane-all these computational techniques allow visualization of complex dynamical processes taking place in the cardiovascular system during the load and the recovery processes. Detailed analysis is performed with one person's RR and JT records only-but the presented techniques open new possibilities for novel interpretation of the dynamics of the cardiovascular system.
本文提出了拉格朗日差分完美矩阵的概念,该矩阵用于分析自行车测力计运动期间RR间期与JT间期之间的关系。拉格朗日差分完美矩阵的概念、其参数、负荷函数的构建以及相应的优化问题、内部和外部平滑的引入、标量参数时间序列在相平面中的嵌入——所有这些计算技术都能使负荷和恢复过程中心血管系统内发生的复杂动态过程可视化。仅对一个人的RR和JT记录进行了详细分析——但所提出的技术为心血管系统动力学的新解释开辟了新的可能性。