Suppr超能文献

马尔可夫随机场与活动轮廓模型的连接:在腺体分割与分类中的应用。

Connecting Markov random fields and active contour models: application to gland segmentation and classification.

作者信息

Xu Jun, Monaco James P, Sparks Rachel, Madabhushi Anant

机构信息

Nanjing University of Information Science and Technology , Jiangsu Key Laboratory of Big Data Analysis Technique, Nanjing, China.

Inspirata , Tampa, Florida, United States.

出版信息

J Med Imaging (Bellingham). 2017 Apr;4(2):021107. doi: 10.1117/1.JMI.4.2.021107. Epub 2017 Mar 28.

Abstract

We introduce a Markov random field (MRF)-driven region-based active contour model (MaRACel) for histological image segmentation. This Bayesian segmentation method combines a region-based active contour (RAC) with an MRF. State-of-the-art RAC models assume that every spatial location in the image is statistically independent, thereby ignoring valuable contextual information among spatial locations. To address this shortcoming, we incorporate an MRF prior into energy term of the RAC. This requires a formulation of the Markov prior consistent with the continuous variational framework characteristic of active contours; consequently, we introduce a continuous analog to the discrete Potts model. Based on the automated segmentation boundary of glands by MaRACel model, explicit shape descriptors are then employed to distinguish prostate glands belonging to Gleason patterns 3 (G3) and 4 (G4). To demonstrate the effectiveness of MaRACel, we compare its performance to the popular models proposed by Chan and Vese (CV) and Rousson and Deriche (RD) with respect to the following tasks: (1) the segmentation of prostatic acini (glands) and (2) the differentiation of G3 and G4 glands. On almost 600 prostate biopsy needle images, MaRACel was shown to have higher average dice coefficients, overlap ratios, sensitivities, specificities, and positive predictive values both in terms of segmentation accuracy and ability to discriminate between G3 and G4 glands compared to the CV and RD models.

摘要

我们提出了一种用于组织学图像分割的马尔可夫随机场(MRF)驱动的基于区域的活动轮廓模型(MaRACel)。这种贝叶斯分割方法将基于区域的活动轮廓(RAC)与MRF相结合。最先进的RAC模型假设图像中的每个空间位置在统计上都是独立的,从而忽略了空间位置之间有价值的上下文信息。为了解决这一缺点,我们将MRF先验纳入RAC的能量项中。这需要一个与活动轮廓的连续变分框架特征一致的马尔可夫先验公式;因此,我们引入了离散Potts模型的连续模拟。基于MaRACel模型对腺体的自动分割边界,然后使用显式形状描述符来区分属于Gleason模式3(G3)和4(G4)的前列腺腺体。为了证明MaRACel的有效性,我们将其性能与Chan和Vese(CV)以及Rousson和Deriche(RD)提出的流行模型在以下任务方面进行比较:(1)前列腺腺泡(腺体)的分割和(2)G3和G4腺体的区分。在近600张前列腺活检针图像上,与CV和RD模型相比,MaRACel在分割准确性以及区分G3和G4腺体的能力方面均显示出更高的平均骰子系数、重叠率、灵敏度、特异性和阳性预测值。

相似文献

1
Connecting Markov random fields and active contour models: application to gland segmentation and classification.
J Med Imaging (Bellingham). 2017 Apr;4(2):021107. doi: 10.1117/1.JMI.4.2.021107. Epub 2017 Mar 28.
2
Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):197-204. doi: 10.1007/978-3-642-15711-0_25.
3
Selective invocation of shape priors for deformable segmentation and morphologic classification of prostate cancer tissue microarrays.
Comput Med Imaging Graph. 2015 Apr;41:3-13. doi: 10.1016/j.compmedimag.2014.11.001. Epub 2014 Nov 12.
4
An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery.
IEEE Trans Med Imaging. 2012 Jul;31(7):1448-60. doi: 10.1109/TMI.2012.2190089. Epub 2012 Apr 5.
6
Adaptive energy selective active contour with shape priors for nuclear segmentation and gleason grading of prostate cancer.
Med Image Comput Comput Assist Interv. 2011;14(Pt 1):661-9. doi: 10.1007/978-3-642-23623-5_83.
7
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.
8
An explicit shape-constrained MRF-based contour evolution method for 2-D medical image segmentation.
IEEE J Biomed Health Inform. 2014 Jan;18(1):120-9. doi: 10.1109/JBHI.2013.2257820.
9
Liver Ultrasound Image Segmentation Using Region-Difference Filters.
J Digit Imaging. 2017 Jun;30(3):376-390. doi: 10.1007/s10278-016-9934-5.
10
ACTIVE MEAN FIELDS FOR PROBABILISTIC IMAGE SEGMENTATION: CONNECTIONS WITH CHAN-VESE AND RUDIN-OSHER-FATEMI MODELS.
SIAM J Imaging Sci. 2017;10(3):1069-1103. doi: 10.1137/16M1058601. Epub 2017 Jul 27.

引用本文的文献

本文引用的文献

1
Gland segmentation in colon histology images: The glas challenge contest.
Med Image Anal. 2017 Jan;35:489-502. doi: 10.1016/j.media.2016.08.008. Epub 2016 Sep 3.
2
A Stochastic Polygons Model for Glandular Structures in Colon Histology Images.
IEEE Trans Med Imaging. 2015 Nov;34(11):2366-78. doi: 10.1109/TMI.2015.2433900. Epub 2015 May 15.
3
An efficient MRF embedded level set method for image segmentation.
IEEE Trans Image Process. 2015 Jan;24(1):9-21. doi: 10.1109/TIP.2014.2372615. Epub 2014 Nov 20.
4
Prostate cancer grading: use of graph cut and spatial arrangement of nuclei.
IEEE Trans Med Imaging. 2014 Dec;33(12):2254-70. doi: 10.1109/TMI.2014.2336883. Epub 2014 Jul 10.
5
Statistical Shape Model for Manifold Regularization: Gleason grading of prostate histology.
Comput Vis Image Underst. 2013 Sep 1;117(9):1138-1146. doi: 10.1016/j.cviu.2012.11.011.
6
Explicit shape descriptors: novel morphologic features for histopathology classification.
Med Image Anal. 2013 Dec;17(8):997-1009. doi: 10.1016/j.media.2013.06.002. Epub 2013 Jun 24.
7
Variational level set combined with Markov random field modeling for simultaneous intensity non-uniformity correction and segmentation of MR images.
J Neurosci Methods. 2012 Aug 15;209(2):280-9. doi: 10.1016/j.jneumeth.2012.06.012. Epub 2012 Jun 21.
8
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
9
A high-throughput active contour scheme for segmentation of histopathological imagery.
Med Image Anal. 2011 Dec;15(6):851-62. doi: 10.1016/j.media.2011.04.002. Epub 2011 Apr 28.
10
Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):197-204. doi: 10.1007/978-3-642-15711-0_25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验