Suppr超能文献

动态补偿、参数可识别性和等变性。

Dynamic compensation, parameter identifiability, and equivariances.

作者信息

Sontag Eduardo D

机构信息

Department of Mathematics and Center for Quantitative Biology, Hill Center, Rutgers University, Piscataway, New Jersey, United States of America.

出版信息

PLoS Comput Biol. 2017 Apr 6;13(4):e1005447. doi: 10.1371/journal.pcbi.1005447. eCollection 2017 Apr.

Abstract

A recent paper by Karin et al. introduced a mathematical notion called dynamical compensation (DC) of biological circuits. DC was shown to play an important role in glucose homeostasis as well as other key physiological regulatory mechanisms. Karin et al. went on to provide a sufficient condition to test whether a given system has the DC property. Here, we show how DC can be formulated in terms of a well-known concept in systems biology, statistics, and control theory-that of parameter structural non-identifiability. Viewing DC as a parameter identification problem enables one to take advantage of powerful theoretical and computational tools to test a system for DC. We obtain as a special case the sufficient criterion discussed by Karin et al. We also draw connections to system equivalence and to the fold-change detection property.

摘要

卡琳等人最近发表的一篇论文引入了一种名为生物电路动态补偿(DC)的数学概念。研究表明,DC在葡萄糖稳态以及其他关键生理调节机制中发挥着重要作用。卡琳等人进而提供了一个充分条件,以测试给定系统是否具有DC特性。在此,我们展示了如何根据系统生物学、统计学和控制理论中的一个著名概念——参数结构不可识别性来阐述DC。将DC视为一个参数识别问题,能够利用强大的理论和计算工具来测试系统是否具有DC特性。作为一个特殊情况,我们得到了卡琳等人讨论的充分准则。我们还建立了与系统等价性和倍数变化检测特性的联系。

相似文献

1
Dynamic compensation, parameter identifiability, and equivariances.
PLoS Comput Biol. 2017 Apr 6;13(4):e1005447. doi: 10.1371/journal.pcbi.1005447. eCollection 2017 Apr.
3
Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation.
PLoS Comput Biol. 2017 Nov 29;13(11):e1005878. doi: 10.1371/journal.pcbi.1005878. eCollection 2017 Nov.
4
Dynamical compensation in physiological circuits.
Mol Syst Biol. 2016 Nov 8;12(11):886. doi: 10.15252/msb.20167216.
5
Structural Identifiability of Dynamic Systems Biology Models.
PLoS Comput Biol. 2016 Oct 28;12(10):e1005153. doi: 10.1371/journal.pcbi.1005153. eCollection 2016 Oct.
6
Structural identifiability of cyclic graphical models of biological networks with latent variables.
BMC Syst Biol. 2016 Jun 13;10(1):41. doi: 10.1186/s12918-016-0287-y.
7
On the relationship between sloppiness and identifiability.
Math Biosci. 2016 Dec;282:147-161. doi: 10.1016/j.mbs.2016.10.009. Epub 2016 Oct 24.
8
Addressing parameter identifiability by model-based experimentation.
IET Syst Biol. 2011 Mar;5(2):120-30. doi: 10.1049/iet-syb.2010.0061.
9
DAISY: a new software tool to test global identifiability of biological and physiological systems.
Comput Methods Programs Biomed. 2007 Oct;88(1):52-61. doi: 10.1016/j.cmpb.2007.07.002. Epub 2007 Aug 20.
10
Parameter and structural identifiability concepts and ambiguities: a critical review and analysis.
Am J Physiol. 1980 Jul;239(1):R7-24. doi: 10.1152/ajpregu.1980.239.1.R7.

引用本文的文献

2
4
Multiplexing information flow through dynamic signalling systems.
PLoS Comput Biol. 2020 Aug 3;16(8):e1008076. doi: 10.1371/journal.pcbi.1008076. eCollection 2020 Aug.
5
Mathematical Details on a Cancer Resistance Model.
Front Bioeng Biotechnol. 2020 Jun 17;8:501. doi: 10.3389/fbioe.2020.00501. eCollection 2020.
6
Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data.
J R Soc Interface. 2020 Jan;17(162):20190734. doi: 10.1098/rsif.2019.0734. Epub 2020 Jan 15.
7
Parameter estimation and identifiability in a neural population model for electro-cortical activity.
PLoS Comput Biol. 2019 May 30;15(5):e1006694. doi: 10.1371/journal.pcbi.1006694. eCollection 2019 May.
8
Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation.
PLoS Comput Biol. 2017 Nov 29;13(11):e1005878. doi: 10.1371/journal.pcbi.1005878. eCollection 2017 Nov.

本文引用的文献

1
Parameter Identifiability of Fundamental Pharmacodynamic Models.
Front Physiol. 2016 Dec 5;7:590. doi: 10.3389/fphys.2016.00590. eCollection 2016.
2
Dynamical compensation in physiological circuits.
Mol Syst Biol. 2016 Nov 8;12(11):886. doi: 10.15252/msb.20167216.
3
Structural Identifiability of Dynamic Systems Biology Models.
PLoS Comput Biol. 2016 Oct 28;12(10):e1005153. doi: 10.1371/journal.pcbi.1005153. eCollection 2016 Oct.
4
On the relationship between sloppiness and identifiability.
Math Biosci. 2016 Dec;282:147-161. doi: 10.1016/j.mbs.2016.10.009. Epub 2016 Oct 24.
5
Comparison of approaches for parameter identifiability analysis of biological systems.
Bioinformatics. 2014 May 15;30(10):1440-8. doi: 10.1093/bioinformatics/btu006. Epub 2014 Jan 23.
7
Minimal output sets for identifiability.
Math Biosci. 2012 Sep;239(1):139-53. doi: 10.1016/j.mbs.2012.04.005. Epub 2012 May 16.
8
GenSSI: a software toolbox for structural identifiability analysis of biological models.
Bioinformatics. 2011 Sep 15;27(18):2610-1. doi: 10.1093/bioinformatics/btr431. Epub 2011 Jul 22.
9
Fold-change detection and scalar symmetry of sensory input fields.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000. doi: 10.1073/pnas.1002352107. Epub 2010 Aug 20.
10
Parameter estimation and model selection in computational biology.
PLoS Comput Biol. 2010 Mar 5;6(3):e1000696. doi: 10.1371/journal.pcbi.1000696.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验