Suppr超能文献

生理回路中的动态补偿

Dynamical compensation in physiological circuits.

作者信息

Karin Omer, Swisa Avital, Glaser Benjamin, Dor Yuval, Alon Uri

机构信息

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Department of Developmental Biology and Cancer Research and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.

出版信息

Mol Syst Biol. 2016 Nov 8;12(11):886. doi: 10.15252/msb.20167216.

Abstract

Biological systems can maintain constant steady-state output despite variation in biochemical parameters, a property known as exact adaptation. Exact adaptation is achieved using integral feedback, an engineering strategy that ensures that the output of a system robustly tracks its desired value. However, it is unclear how physiological circuits also keep their output dynamics precise-including the amplitude and response time to a changing input. Such robustness is crucial for endocrine and neuronal homeostatic circuits because they need to provide a precise dynamic response in the face of wide variation in the physiological parameters of their target tissues; how such circuits compensate their dynamics for unavoidable natural fluctuations in parameters is unknown. Here, we present a design principle that provides the desired robustness, which we call dynamical compensation (DC). We present a class of circuits that show DC by means of a nonlinear feedback loop in which the regulated variable controls the functional mass of the controlling endocrine or neuronal tissue. This mechanism applies to the control of blood glucose by insulin and explains several experimental observations on insulin resistance. We provide evidence that this mechanism may also explain compensation and organ size control in other physiological circuits.

摘要

尽管生化参数存在变化,生物系统仍能维持恒定的稳态输出,这一特性被称为精确适应。精确适应是通过积分反馈实现的,这是一种工程策略,可确保系统输出稳健地跟踪其期望值。然而,尚不清楚生理回路如何保持其输出动态精确,包括对变化输入的幅度和响应时间。这种稳健性对于内分泌和神经元稳态回路至关重要,因为它们需要在其靶组织的生理参数存在广泛变化的情况下提供精确的动态响应;此类回路如何针对参数中不可避免的自然波动来补偿其动态仍不清楚。在此,我们提出一种提供所需稳健性的设计原则,我们称之为动态补偿(DC)。我们展示了一类通过非线性反馈回路表现出DC的回路,其中调节变量控制着控制内分泌或神经元组织的功能质量。这种机制适用于胰岛素对血糖的控制,并解释了关于胰岛素抵抗的若干实验观察结果。我们提供证据表明,这种机制也可能解释其他生理回路中的补偿和器官大小控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9793/5147051/6d6cc6a8f578/MSB-12-886-g002.jpg

相似文献

1
Dynamical compensation in physiological circuits.
Mol Syst Biol. 2016 Nov 8;12(11):886. doi: 10.15252/msb.20167216.
2
Adaptive information processing of network modules to dynamic and spatial stimuli.
BMC Syst Biol. 2019 Mar 14;13(1):32. doi: 10.1186/s12918-019-0703-1.
3
A universal biomolecular integral feedback controller for robust perfect adaptation.
Nature. 2019 Jun;570(7762):533-537. doi: 10.1038/s41586-019-1321-1. Epub 2019 Jun 19.
4
Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation.
PLoS Comput Biol. 2017 Nov 29;13(11):e1005878. doi: 10.1371/journal.pcbi.1005878. eCollection 2017 Nov.
5
6
Threshold-dominated regulation hides genetic variation in gene expression networks.
BMC Syst Biol. 2007 Dec 6;1:57. doi: 10.1186/1752-0509-1-57.
7
Dynamical roles of biological regulatory circuits.
Brief Bioinform. 2007 Jul;8(4):220-5. doi: 10.1093/bib/bbm028. Epub 2007 Jul 11.
8
Dynamic compensation, parameter identifiability, and equivariances.
PLoS Comput Biol. 2017 Apr 6;13(4):e1005447. doi: 10.1371/journal.pcbi.1005447. eCollection 2017 Apr.
9
Systems biology of mammalian circadian clocks.
Cold Spring Harb Symp Quant Biol. 2007;72:365-80. doi: 10.1101/sqb.2007.72.047.
10
Robust perfect adaptation in bacterial chemotaxis through integral feedback control.
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4649-53. doi: 10.1073/pnas.97.9.4649.

引用本文的文献

3
Pregnancy and postpartum dynamics revealed by millions of lab tests.
Sci Adv. 2025 Mar 28;11(13):eadr7922. doi: 10.1126/sciadv.adr7922. Epub 2025 Mar 26.
4
Employing Observability Rank Conditions for Taking into Account Experimental Information a priori.
Bull Math Biol. 2025 Feb 6;87(3):39. doi: 10.1007/s11538-025-01415-3.
5
Hormone circuit explains why most HPA drugs fail for mood disorders and predicts the few that work.
Mol Syst Biol. 2025 Mar;21(3):254-273. doi: 10.1038/s44320-024-00083-0. Epub 2025 Jan 23.
6
Sleeve gastrectomy reveals the plasticity of the human gastric epithelium.
Nat Commun. 2025 Jan 20;16(1):869. doi: 10.1038/s41467-025-56135-y.
7
Endocrine gland size is proportional to its target tissue size.
iScience. 2024 Jul 31;27(9):110625. doi: 10.1016/j.isci.2024.110625. eCollection 2024 Sep 20.
8
Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells.
Genome Biol. 2024 Aug 12;25(1):217. doi: 10.1186/s13059-024-03351-2.
9
Achieving Occam's razor: Deep learning for optimal model reduction.
PLoS Comput Biol. 2024 Jul 18;20(7):e1012283. doi: 10.1371/journal.pcbi.1012283. eCollection 2024 Jul.

本文引用的文献

1
A Mathematical Model of the Pathogenesis, Prevention, and Reversal of Type 2 Diabetes.
Endocrinology. 2016 Feb;157(2):624-35. doi: 10.1210/en.2015-1564. Epub 2015 Dec 28.
2
Hepatic insulin sensitivity in healthy and prediabetic subjects: from a dual- to a single-tracer oral minimal model.
Am J Physiol Endocrinol Metab. 2015 Jul 15;309(2):E161-7. doi: 10.1152/ajpendo.00358.2014. Epub 2015 May 19.
3
Homeostasis, inflammation, and disease susceptibility.
Cell. 2015 Feb 26;160(5):816-827. doi: 10.1016/j.cell.2015.02.010.
4
An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia.
Cell. 2014 Jan 16;156(1-2):291-303. doi: 10.1016/j.cell.2013.12.013.
5
Diagnosis and classification of diabetes mellitus.
Diabetes Care. 2014 Jan;37 Suppl 1:S81-90. doi: 10.2337/dc14-S081.
6
Carotid body hyperplasia and enhanced ventilatory responses to hypoxia in mice with heterozygous deficiency of PHD2.
J Physiol. 2013 Jul 15;591(14):3565-77. doi: 10.1113/jphysiol.2012.247254. Epub 2013 May 20.
7
Control of pancreatic β cell regeneration by glucose metabolism.
Cell Metab. 2011 Apr 6;13(4):440-449. doi: 10.1016/j.cmet.2011.02.012.
8
Fold-change detection and scalar symmetry of sensory input fields.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000. doi: 10.1073/pnas.1002352107. Epub 2010 Aug 20.
9
The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis.
Physiol Rev. 2010 Apr;90(2):675-754. doi: 10.1152/physrev.00012.2009.
10
Defining network topologies that can achieve biochemical adaptation.
Cell. 2009 Aug 21;138(4):760-73. doi: 10.1016/j.cell.2009.06.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验