MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University , Guangzhou 510275, P. R. China.
J Am Chem Soc. 2017 Apr 26;139(16):5660-5663. doi: 10.1021/jacs.7b00489. Epub 2017 Apr 18.
Halide perovskite quantum dots (QDs), primarily regarded as optoelectronic materials for LED and photovoltaic devices, have not been applied for photochemical conversion (e.g., water splitting or CO reduction) applications because of their insufficient stability in the presence of moisture or polar solvents. Herein, we report the use of CsPbBr QDs as novel photocatalysts to convert CO into solar fuels in nonaqueous media. Under AM 1.5G simulated illumination, the CsPbBr QDs steadily generated and injected electrons into CO, catalyzing CO reduction at a rate of 23.7 μmol/g h with a selectivity over 99.3%. Additionally, through the construction of a CsPbBr QD/graphene oxide (CsPbBr QD/GO) composite, the rate of electron consumption increased 25.5% because of improved electron extraction and transport. This study is anticipated to provide new opportunities to utilize halide perovskite QD materials in photocatalytic applications.
卤化物钙钛矿量子点(QDs)主要被视为用于 LED 和光伏器件的光电材料,由于其在存在水分或极性溶剂时的稳定性不足,尚未应用于光化学转化(例如,水分解或 CO 还原)应用。在此,我们报告了使用 CsPbBr QDs 作为新型光催化剂在非水介质中将 CO 转化为太阳能燃料。在 AM 1.5G 模拟光照下,CsPbBr QDs 稳定地产生并将电子注入 CO 中,以 23.7 μmol/g h 的速率催化 CO 还原,选择性超过 99.3%。此外,通过构建 CsPbBr QD/氧化石墨烯(CsPbBr QD/GO)复合材料,由于电子提取和传输得到改善,电子消耗速率提高了 25.5%。这项研究有望为在光催化应用中利用卤化物钙钛矿 QD 材料提供新的机会。