Suppr超能文献

非痴呆型帕金森病的神经心理学亚组:一项潜在类别分析

Neuropsychological Subgroups in Non-Demented Parkinson's Disease: A Latent Class Analysis.

作者信息

Brennan Laura, Devlin Kathryn M, Xie Sharon X, Mechanic-Hamilton Dawn, Tran Baochan, Hurtig Howard H, Chen-Plotkin Alice, Chahine Lama M, Morley James F, Duda John E, Roalf David R, Dahodwala Nabila, Rick Jacqueline, Trojanowski John Q, Moberg Paul J, Weintraub Daniel

机构信息

Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA.

Department of Psychology, Temple University, Philadelphia, PA, USA.

出版信息

J Parkinsons Dis. 2017;7(2):385-395. doi: 10.3233/JPD-171081.

Abstract

BACKGROUND

Methods to detect early cognitive decline and account for heterogeneity of deficits in Parkinson's disease (PD) are needed. Quantitative methods such as latent class analysis (LCA) offer an objective approach to delineate discrete phenotypes of impairment.

OBJECTIVE

To identify discrete neurocognitive phenotypes in PD patients without dementia.

METHODS

LCA was applied to a battery of 8 neuropsychological measures to identify cognitive subtypes in a cohort of 199 non-demented PD patients. Two measures were analyzed from each of four domains: executive functioning, memory, visuospatial abilities, and language. Additional analyses compared groups on clinical characteristics and cognitive diagnosis.

RESULTS

LCA identified 3 distinct groups of PD patients: an intact cognition group (54.8%), an amnestic group (32.2%), and a mixed impairment group with dysexecutive, visuospatial and lexical retrieval deficits (13.1%). The two impairment groups had significantly lower instrumental activities of daily living ratings and greater motor symptoms than the intact group. Of those diagnosed as cognitively normal according to MDS criteria, LCA classified 23.2% patients as amnestic and 9.9% as mixed cognitive impairment.

CONCLUSIONS

Non-demented PD patients exhibit distinct neuropsychological profiles. One-third of patients with LCA-determined impairment were diagnosed as cognitively intact by expert consensus, indicating that classification using a statistical algorithm may improve detection of initial and subtle cognitive decline. This study also demonstrates that memory impairment is common in non-demented PD even when cognitive impairment is not clinically apparent. This study has implications for predicting eventual emergence of significant cognitive decline, and treatment trials for cognitive dysfunction in PD.

摘要

背景

需要有方法来检测帕金森病(PD)早期认知功能下降情况并解释其缺陷的异质性。诸如潜在类别分析(LCA)等定量方法提供了一种客观途径来描绘离散的损伤表型。

目的

识别无痴呆的PD患者中的离散神经认知表型。

方法

将LCA应用于一组8项神经心理学测量,以识别199名无痴呆PD患者队列中的认知亚型。从四个领域中的每个领域分析两项测量:执行功能、记忆、视觉空间能力和语言。额外的分析比较了各亚组在临床特征和认知诊断方面的差异。

结果

LCA识别出3组不同的PD患者:认知功能完整组(54.8%)、遗忘组(32.2%)和伴有执行功能障碍、视觉空间和词汇检索缺陷的混合损伤组(13.1%)。与认知功能完整组相比,两个损伤组的日常生活工具性活动评分显著更低,运动症状更严重。在根据MDS标准被诊断为认知正常的患者中,LCA将23.2%的患者分类为遗忘型,9.9%为混合认知损伤型。

结论

无痴呆的PD患者表现出不同的神经心理学特征。通过LCA确定为有损伤的患者中,三分之一经专家共识被诊断为认知功能完整,这表明使用统计算法进行分类可能会改善对初始和细微认知下降的检测。本研究还表明,即使认知障碍在临床上不明显,记忆障碍在无痴呆的PD患者中也很常见。本研究对预测最终显著认知下降的出现以及PD认知功能障碍的治疗试验具有启示意义。

相似文献

10

引用本文的文献

10

本文引用的文献

3
Longitudinal study of normal cognition in Parkinson disease.帕金森病正常认知的纵向研究。
Neurology. 2015 Oct 13;85(15):1276-82. doi: 10.1212/WNL.0000000000002001. Epub 2015 Sep 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验