Rawson Randi L, Martin E Anne, Williams Megan E
Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 South 2030 East, Salt Lake City, UT 84112, United States.
Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 South 2030 East, Salt Lake City, UT 84112, United States.
Curr Opin Neurobiol. 2017 Aug;45:39-44. doi: 10.1016/j.conb.2017.03.006. Epub 2017 Apr 5.
For most neurons to function properly, they need to develop synaptic specificity. This requires finding specific partner neurons, building the correct types of synapses, and fine-tuning these synapses in response to neural activity. Synaptic specificity is common at both a neuron's input and output synapses, whereby unique synapses are built depending on the partnering neuron. Neuroscientists have long appreciated the remarkable specificity of neural circuits but identifying molecular mechanisms mediating synaptic specificity has only recently accelerated. Here, we focus on recent progress in understanding input and output synaptic specificity in the mammalian brain. We review newly identified circuit examples for both and the latest research identifying molecular mediators including Kirrel3, FGFs, and DGLα. Lastly, we expect the pace of research on input and output specificity to continue to accelerate with the advent of new technologies in genomics, microscopy, and proteomics.
对于大多数神经元正常发挥功能而言,它们需要形成突触特异性。这需要找到特定的伙伴神经元,构建正确类型的突触,并根据神经活动对这些突触进行微调。突触特异性在神经元的输入和输出突触中都很常见,据此会根据伙伴神经元构建独特的突触。长期以来,神经科学家一直认识到神经回路具有显著的特异性,但介导突触特异性的分子机制直到最近才加速得到识别。在这里,我们重点关注在理解哺乳动物大脑中输入和输出突触特异性方面的最新进展。我们回顾了两者新发现的回路实例以及识别包括Kirrel3、成纤维细胞生长因子(FGFs)和DGLα在内的分子介质的最新研究。最后,随着基因组学、显微镜学和蛋白质组学等新技术的出现,我们预计对输入和输出特异性的研究步伐将继续加快。