Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
Evonik Nutrition & Care GmbH, Kantstr. 2, 33790 Halle, Germany.
Metab Eng. 2017 May;41:159-172. doi: 10.1016/j.ymben.2017.03.008. Epub 2017 Apr 4.
The identification of promising metabolic engineering targets is a key issue in metabolic control analysis (MCA). Conventional approaches make intensive use of model-based studies, such as exploiting post-pulse metabolic dynamics after proper perturbation of the microbial system. Here, we present an easy-to-use, purely data-driven approach, defining pool efflux capacities (PEC) for identifying reactions that exert the highest flux control in linear pathways. Comparisons with linlog-based MCA and data-driven substrate elasticities (DDSE) showed that similar key control steps were identified using PEC. Using the example of l-methionine production with recombinant Escherichia coli, PEC consistently and robustly identified main flux controls using perturbation data after a non-labeled C-l-serine stimulus. Furthermore, the application of full-labeled C-l-serine stimuli yielded additional insights into stimulus propagation to l-methionine. PEC analysis performed on the C data set revealed the same targets as the C data set. Notably, the typical drawback of metabolome analysis, namely, the omnipresent leakage of metabolites, was excluded using the C PEC approach.
确定有前途的代谢工程靶点是代谢控制分析(MCA)的关键问题。传统方法广泛利用基于模型的研究,例如在适当扰动微生物系统后利用脉冲后代谢动力学。在这里,我们提出了一种易于使用的、纯粹的数据驱动方法,定义池流出能力(PEC)以识别在线性途径中施加最高通量控制的反应。与基于 linlog 的 MCA 和数据驱动的底物弹性(DDSE)的比较表明,使用 PEC 可以识别出相似的关键控制步骤。使用重组大肠杆菌生产 l-蛋氨酸的示例,PEC 使用非标记的 C-l-丝氨酸刺激后的扰动数据一致且稳健地确定了主要通量控制。此外,使用全标记的 C-l-丝氨酸刺激物进一步深入了解了刺激物向 l-蛋氨酸的传播。对 C 数据集进行的 PEC 分析揭示了与 C 数据集相同的目标。值得注意的是,使用 C PEC 方法排除了代谢组分析中普遍存在的代谢物泄漏的典型缺点。