Suppr超能文献

相似文献

1
A Computational Study of Vocal Fold Dehydration During Phonation.
IEEE Trans Biomed Eng. 2017 Dec;64(12):2938-2948. doi: 10.1109/TBME.2017.2691399. Epub 2017 Apr 5.
2
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
3
Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
Int J Numer Method Biomed Eng. 2014 Oct;30(10):1019-43. doi: 10.1002/cnm.2642. Epub 2014 Apr 23.
4
Computational Study of the Impact of Dehydration-Induced Vocal Fold Stiffness Changes on Voice Production.
J Voice. 2024 Jul;38(4):836-843. doi: 10.1016/j.jvoice.2022.02.001. Epub 2022 Mar 6.
5
Vocal instabilities in a three-dimensional body-cover phonation model.
J Acoust Soc Am. 2018 Sep;144(3):1216. doi: 10.1121/1.5053116.
6
Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
J Biomech. 2007;40(10):2191-8. doi: 10.1016/j.jbiomech.2006.10.030. Epub 2006 Dec 21.
7
A computational study of systemic hydration in vocal fold collision.
Comput Methods Biomech Biomed Engin. 2014;17(16):1835-52. doi: 10.1080/10255842.2013.772591. Epub 2013 Mar 26.
8
Vocal fold contact pressure in a three-dimensional body-cover phonation model.
J Acoust Soc Am. 2019 Jul;146(1):256. doi: 10.1121/1.5116138.
9
Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
J Acoust Soc Am. 2011 Feb;129(2):934-43. doi: 10.1121/1.3533692.

引用本文的文献

1
3
The effect of swelling on vocal fold kinematics and dynamics.
Biomech Model Mechanobiol. 2023 Dec;22(6):1873-1889. doi: 10.1007/s10237-023-01740-3. Epub 2023 Jul 10.
6
Proton density-weighted laryngeal magnetic resonance imaging in systemically dehydrated rats.
Laryngoscope. 2018 Jun;128(6):E222-E227. doi: 10.1002/lary.26978. Epub 2017 Nov 8.

本文引用的文献

1
Mechanics of human voice production and control.
J Acoust Soc Am. 2016 Oct;140(4):2614. doi: 10.1121/1.4964509.
3
Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
J Voice. 2015 May;29(3):265-72. doi: 10.1016/j.jvoice.2014.08.010. Epub 2015 Jan 22.
4
Permeability of canine vocal fold lamina propria.
Laryngoscope. 2015 Apr;125(4):941-5. doi: 10.1002/lary.25067. Epub 2014 Dec 10.
5
Systemic hydration: relating science to clinical practice in vocal health.
J Voice. 2014 Sep;28(5):652.e1-652.e20. doi: 10.1016/j.jvoice.2014.01.007. Epub 2014 May 28.
7
A computational study of systemic hydration in vocal fold collision.
Comput Methods Biomech Biomed Engin. 2014;17(16):1835-52. doi: 10.1080/10255842.2013.772591. Epub 2013 Mar 26.
8
Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree.
Phys Biol. 2011 Oct;8(5):056006. doi: 10.1088/1478-3975/8/5/056006. Epub 2011 Aug 24.
9
Effects of surface dehydration on mucosal wave amplitude and frequency in excised canine larynges.
Otolaryngol Head Neck Surg. 2011 Jan;144(1):108-13. doi: 10.1177/0194599810390893.
10
Ex vivo canine vocal fold lamina propria rehydration after varying dehydration levels.
J Voice. 2011 Nov;25(6):657-62. doi: 10.1016/j.jvoice.2010.06.005. Epub 2010 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验