Suppr超能文献

年轻人压力过载下的嗓音扰动:表型分析及亚健康作为级联病理的预测因素

Voice perturbations under the stress overload in young individuals: phenotyping and suboptimal health as predictors for cascading pathologies.

作者信息

Kunin A, Sargheini N, Birkenbihl C, Moiseeva N, Fröhlich Holger, Golubnitschaja Olga

机构信息

Departments of Maxillofacial Surgery and Hospital Dentistry, Voronezh N.N. Burdenko State Medical University, Voronezh, Russia.

Center of Molecular Biotechnology, CEMBIO, Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.

出版信息

EPMA J. 2020 Nov 12;11(4):517-527. doi: 10.1007/s13167-020-00229-8. eCollection 2020 Dec.

Abstract

Verbal communication is one of the most sophisticated human motor skills reflecting both-the mental and physical health of an individual. Voice parameters and quality changes are usually secondary towards functional and/or structural laryngological alterations under specific systemic processes, syndrome and pathologies. These include but are not restricted to dry mouth and Sicca syndromes, body dehydration, hormonal alterations linked to pubertal, menopausal, and andropausal status, respiratory disorders, gastrointestinal reflux, autoimmune diseases, endocrinologic disorders, underweight versus overweight and obesity, and diabetes mellitus. On the other hand, it is well-established that stress overload is a significant risk factor of cascading pathologies, including but not restricted to neurodegenerative and psychiatric disorders, diabetes mellitus, cardiovascular disease, stroke, and cancers. Our current study revealed voice perturbations under the stress overload as a potentially useful biomarker to identify individuals in suboptimal health conditions who might be strongly predisposed to associated pathologies. Contextually, extended surveys applied in the population might be useful to identify, for example, persons at high risk for respiratory complications under pandemic conditions such as COVID-19. Symptoms of dry mouth syndrome, disturbed microcirculation, altered sense regulation, shifted circadian rhythm, and low BMI were positively associated with voice perturbations under the stress overload. Their functional interrelationships and relevance for cascading associated pathologies are presented in the article. Automated analysis of voice recordings via artificial intelligence (AI) has a potential to derive digital biomarkers. Further, predictive machine learning models should be developed that allows for detecting a suboptimal health condition based on voice recordings, ideally in an automated manner using derived digital biomarkers. Follow-up stratification and monitoring of individuals in suboptimal health conditions are recommended using disease-specific cell-free nucleic acids (ccfDNA, ctDNA, mtDNA, miRNA) combined with metabolic patterns detected in body fluids. Application of the cost-effective targeted prevention within the phase of reversible health damage is recommended based on the individualised patient profiling.

摘要

言语交流是最复杂的人类运动技能之一,反映了个体的身心健康。在特定的全身过程、综合征和病理状态下,语音参数和质量变化通常继发于功能性和/或结构性喉科改变。这些包括但不限于口干和干燥综合征、身体脱水、与青春期、更年期和男性更年期状态相关的激素改变、呼吸系统疾病、胃食管反流、自身免疫性疾病、内分泌疾病、体重过轻与超重及肥胖,以及糖尿病。另一方面,压力过载是一系列病理状况的重要危险因素,包括但不限于神经退行性和精神疾病、糖尿病、心血管疾病、中风和癌症。我们目前的研究揭示了压力过载下的语音扰动是一种潜在有用的生物标志物,可用于识别健康状况欠佳且可能极易患相关疾病的个体。在此背景下,在人群中进行的扩展调查可能有助于识别,例如,在COVID-19等大流行情况下有呼吸并发症高风险的人群。口干综合征症状、微循环紊乱、感觉调节改变、昼夜节律改变和低体重指数与压力过载下的语音扰动呈正相关。本文介绍了它们的功能相互关系以及与相关级联病理的相关性。通过人工智能(AI)对语音记录进行自动分析有潜力得出数字生物标志物。此外,应开发预测性机器学习模型,以便基于语音记录检测健康状况欠佳,理想情况下使用衍生的数字生物标志物以自动化方式进行检测。建议使用疾病特异性无细胞核酸(ccfDNA、ctDNA、mtDNA、miRNA)结合在体液中检测到的代谢模式,对健康状况欠佳的个体进行随访分层和监测。基于个体化患者概况,建议在可逆性健康损害阶段应用具有成本效益的靶向预防措施。

相似文献

引用本文的文献

6

本文引用的文献

7
Menopause and frailty: a scoping review.绝经与虚弱:范围综述。
Menopause. 2020 Oct;27(10):1185-1195. doi: 10.1097/GME.0000000000001612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验