Institute of Computer Science, University of Tartu, 50409, Estonia.
Institute of Computer Science, University of Tartu, 50409, Estonia
G3 (Bethesda). 2017 May 5;7(5):1385-1392. doi: 10.1534/g3.116.033654.
High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.
高通量显微镜对许多单细胞进行成像,生成的高维数据很难直接分析。一个重要的问题是自动检测荧光标记蛋白所在的细胞区室,对于有经验的人来说,这一任务相对简单,但在计算机上实现自动化却很困难。在这里,我们在数千个酵母蛋白图谱数据上训练了一个 11 层神经网络,在保留图像上,每个细胞的定位分类准确率达到 91%,每个蛋白的准确率达到 99%。我们证实,低层次的网络特征对应于基本的图像特征,而更深层次的特征则分离出定位类别。我们使用这个网络作为特征计算器,在仅观察少量训练样本后,训练标准分类器,将蛋白分配到以前未见过的区室中。我们的结果是迄今为止最准确的亚细胞定位分类,证明了深度学习在高通量显微镜中的有用性。