Gregoretti Francesco, Cesarini Elisa, Lanzuolo Chiara, Oliva Gennaro, Antonelli Laura
Institute for High Performance Computing and Networking, ICAR-CNR, via Pietro Castellino 111, Naples, 80131, Italy.
Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, via del Fosso di Fiorano 64, Rome, 00143, Italy.
Methods Mol Biol. 2016;1480:181-97. doi: 10.1007/978-1-4939-6380-5_16.
The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.
在依赖先进显微镜技术的生物学实验中产生的大量数据,只能通过自动图像分析来处理。大多数分析最终都需要可靠的细胞图像分割,以检测亚细胞结构。我们提出了一种自动分割方法,用于在高分辨率荧光细胞图像堆栈中检测从细胞核区域分离出的多梳蛋白(PcG)区域。它结合了两种分割算法,一种使用活动轮廓模型,另一种使用分类技术,作为更好地理解活细胞图像序列中PcG蛋白亚细胞三维分布的工具。我们在来自不同细胞类型且对应不同荧光标记的多个细胞图像数据集中都获得了准确的结果,而无需对每个数据集进行精心调整。