Suppr超能文献

深度学习解锁微流控中无标记的癌症球体活力评估。

Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics.

机构信息

UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.

Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA.

出版信息

Lab Chip. 2024 Jun 11;24(12):3169-3182. doi: 10.1039/d4lc00197d.

Abstract

Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.

摘要

尽管癌症治疗在最近取得了进展,但对于肿瘤学家来说,仍然需要对治疗药物进行精细的评估。精确评估药物的有效性需要使用 3D 细胞培养,而不是传统的 2D 单层细胞。微流控平台使 3D 模型的高通量药物筛选成为可能,但目前用于 3D 癌症球体的活力测定方法在可靠性和细胞毒性方面存在局限性。本研究提出了一种基于相差成像的无标记、非破坏性 3D 球体活力估计的深度学习模型,为微流控中连续球体监测提供了一种经济高效、高通量的解决方案。微流控技术有助于创建高通量癌症球体平台,每个芯片上有约 12000 个球体,用于药物筛选。验证涉及对八种常规化疗药物的测试,结果显示,基于 LIVE/DEAD 染色和相差形态评估的活力之间存在很强的相关性。将模型的应用扩展到训练数据集之外的新化合物和细胞系也取得了有希望的结果,这意味着可能开发出一种通用的活力估计模型。使用替代显微镜设置的实验支持了该模型在不同实验室之间的可转移性。使用这种方法,我们还跟踪了药物给药过程中球体活力的动态变化。总之,本研究将高通量微流控癌症球体测定与基于深度学习的活力估计相结合,具有广泛的适用性,可用于各种细胞系、化合物和研究环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d98/11165951/197c6376630f/d4lc00197d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验