Suppr超能文献

激光激活纳米液滴体内对比增强超声成像。

Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, 30332, USA.

出版信息

Med Phys. 2017 Jul;44(7):3444-3449. doi: 10.1002/mp.12269. Epub 2017 May 16.

Abstract

PURPOSE

This study introduces a real-time contrast-enhanced ultrasound imaging method with recently developed laser-activated nanodroplets (LANDs), a new class of phase-change nanometer-scale contrast agents that provides perceptible, sustained high-contrast with ultrasound.

METHODS

In response to pulsed laser irradiation, the LANDs-, which contain liquid perfluorohexane and optical fuses-blink (vaporize and recondense). That is, they change their state from liquid nanodroplets to gas microbubbles, and then back to liquid nanodroplets. In their gaseous microbubble state, the LANDs provide high-contrast ultrasound, but the microbubbles formed in situ typically recondense in tens of milliseconds. As a result, LAND visualization by standard, real-time ultrasound is limited. However, the periodic optical triggering of LANDs allows us to observe corresponding transient, periodic changes in ultrasound contrast. This study formulates a probability function that measures how ultrasound temporal signals vary in periodicity. Then, the estimated probability is mapped onto a B-scan image to construct a LAND-localized, contrast-enhanced image. We verified our method through phantom and in vivo experiments using an ultrasound system (Vevo 2100, FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) operating with a 40-MHz linear array and interfaced with a 10 Hz Nd:YAG laser (Phocus, Opotek Inc., Carlsbad, CA, USA) operating at the fundamental 1064 nm wavelength.

RESULTS

From the phantom study, the results showed improvements in the contrast-to-noise ratio of our approach over conventional ultrasound ranging from 129% to 267%, with corresponding execution times of 0.10 to 0.29 s, meaning that the developed method is computationally efficient while yielding high-contrast ultrasound. Furthermore, in vivo sentinel lymph node (SLN) imaging results demonstrated that our technique could accurately identify the SLN.

CONCLUSIONS

The results indicate that our approach enables efficient and robust LAND localization in real time with substantially improved contrast, which is essential for the successful translation of this contrast agent platform to clinical settings.

摘要

目的

本研究介绍了一种实时对比增强超声成像方法,使用最近开发的激光激活纳米液滴(LANDs),这是一类新的相变型纳米级造影剂,可提供可感知的、持续的高强度超声对比。

方法

响应于脉冲激光照射,含有液态全氟己烷和光学引信的 LANDs 闪烁(蒸发和再冷凝)。也就是说,它们的状态从液态纳米液滴变为气态微泡,然后再回到液态纳米液滴。在气态微泡状态下,LANDs 提供高强度超声,但原位形成的微泡通常在数十毫秒内再冷凝。因此,标准实时超声对 LANDs 的可视化受到限制。然而,LANDs 的周期性光学触发允许我们观察到相应的超声对比的瞬态、周期性变化。本研究提出了一种概率函数,用于测量超声时变信号的周期性变化。然后,将估计的概率映射到 B 扫描图像上,以构建 LAND 定位的、对比度增强的图像。我们通过使用配备 40MHz 线性阵列的超声系统(Vevo 2100,FUJIFILM VisualSonics,Inc.,多伦多,ON,加拿大)和与基本 1064nm 波长的 10Hz Nd:YAG 激光(Phocus,Opotek Inc.,Carlsbad,CA,USA)接口的体内实验验证了我们的方法。

结果

从体模研究结果来看,与传统超声相比,我们的方法在对比度噪声比方面的改善幅度在 129%至 267%之间,相应的执行时间为 0.10 至 0.29s,这意味着所开发的方法在产生高强度超声的同时具有计算效率。此外,体内前哨淋巴结(SLN)成像结果表明,我们的技术能够准确识别 SLN。

结论

结果表明,我们的方法能够以显著提高的对比度实时有效地进行 LAND 定位,这对于成功将这种造影剂平台转化为临床应用至关重要。

相似文献

1
Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets.
Med Phys. 2017 Jul;44(7):3444-3449. doi: 10.1002/mp.12269. Epub 2017 May 16.
2
Repeated Acoustic Vaporization of Perfluorohexane Nanodroplets for Contrast-Enhanced Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Dec;68(12):3497-3506. doi: 10.1109/TUFFC.2021.3093828. Epub 2021 Nov 23.
3
Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets.
Nano Lett. 2016 Apr 13;16(4):2556-9. doi: 10.1021/acs.nanolett.6b00108. Epub 2016 Apr 5.
5
Super-Resolution Imaging With Ultrafast Ultrasound Imaging of Optically Triggered Perfluorohexane Nanodroplets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2277-2285. doi: 10.1109/TUFFC.2018.2829740. Epub 2018 Apr 24.
6
Characterising the chemical and physical properties of phase-change nanodroplets.
Ultrason Sonochem. 2023 Jul;97:106445. doi: 10.1016/j.ultsonch.2023.106445. Epub 2023 May 18.
7
Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging.
Theranostics. 2016 Jul 25;6(11):1866-76. doi: 10.7150/thno.14961. eCollection 2016.
8
Low-boiling Point Perfluorocarbon Nanodroplets as Dual-Phase Dual-Modality MR/US Contrast Agent.
Chemphyschem. 2022 Dec 16;23(24):e202200438. doi: 10.1002/cphc.202200438. Epub 2022 Sep 29.
9
Bubble Inflation Using Phase-Change Perfluorocarbon Nanodroplets as a Strategy for Enhanced Ultrasound Imaging and Therapy.
Langmuir. 2020 Mar 24;36(11):2954-2965. doi: 10.1021/acs.langmuir.9b03647. Epub 2020 Mar 9.
10
Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice.
Ultrasound Med Biol. 2010 Jun;36(6):935-48. doi: 10.1016/j.ultrasmedbio.2010.03.015. Epub 2010 May 5.

引用本文的文献

3
Effect of perfluorocarbon composition on activation of phase-changing ultrasound contrast agents.
Med Phys. 2022 Apr;49(4):2212-2219. doi: 10.1002/mp.15564. Epub 2022 Mar 7.
4
Sonoporation based on repeated vaporization of gold nanodroplets.
Med Phys. 2022 Apr;49(4):2761-2773. doi: 10.1002/mp.15544. Epub 2022 Mar 3.
5
Advantages of CT nano-contrast agent in tumor diagnosis: A retrospective study.
Medicine (Baltimore). 2021 Sep 17;100(37):e27044. doi: 10.1097/MD.0000000000027044.
7
Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and Photoacoustic imaging.
Nano Res. 2019 Apr;12(4):741-747. doi: 10.1007/s12274-019-2279-x. Epub 2019 Jan 23.
8
Gas-generating nanoparticles for contrast-enhanced ultrasound imaging.
Nanoscale. 2019 Sep 21;11(35):16235-16240. doi: 10.1039/c9nr04471j. Epub 2019 Aug 27.
9
Toward optimization of blood brain barrier opening induced by laser-activated perfluorocarbon nanodroplets.
Biomed Opt Express. 2019 Jun 6;10(7):3139-3151. doi: 10.1364/BOE.10.003139. eCollection 2019 Jul 1.
10
Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets.
Ultrasound Med Biol. 2019 Jun;45(6):1489-1499. doi: 10.1016/j.ultrasmedbio.2019.02.009. Epub 2019 Apr 8.

本文引用的文献

1
Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging.
Theranostics. 2016 Jul 25;6(11):1866-76. doi: 10.7150/thno.14961. eCollection 2016.
2
Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets.
Nano Lett. 2016 Apr 13;16(4):2556-9. doi: 10.1021/acs.nanolett.6b00108. Epub 2016 Apr 5.
4
Label-free Detection of Lymph Node Metastases with US-guided Functional Photoacoustic Imaging.
Radiology. 2015 Nov;277(2):435-42. doi: 10.1148/radiol.2015141909. Epub 2015 May 21.
5
Lymphoscintigraphy and sentinel nodes.
J Nucl Med. 2015 Jun;56(6):901-7. doi: 10.2967/jnumed.114.141432. Epub 2015 Apr 30.
6
The role of MRI in axillary lymph node imaging in breast cancer patients: a systematic review.
Insights Imaging. 2015 Apr;6(2):203-15. doi: 10.1007/s13244-015-0404-2. Epub 2015 Mar 24.
7
Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.
Ultrasound Med Biol. 2015 Mar;41(3):814-31. doi: 10.1016/j.ultrasmedbio.2014.10.020. Epub 2015 Jan 22.
8
Cancer statistics, 2015.
CA Cancer J Clin. 2015 Jan-Feb;65(1):5-29. doi: 10.3322/caac.21254. Epub 2015 Jan 5.
10
Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review.
Lancet Oncol. 2014 Jul;15(8):e351-62. doi: 10.1016/S1470-2045(13)70590-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验