School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, 30332, USA.
Med Phys. 2017 Jul;44(7):3444-3449. doi: 10.1002/mp.12269. Epub 2017 May 16.
This study introduces a real-time contrast-enhanced ultrasound imaging method with recently developed laser-activated nanodroplets (LANDs), a new class of phase-change nanometer-scale contrast agents that provides perceptible, sustained high-contrast with ultrasound.
In response to pulsed laser irradiation, the LANDs-, which contain liquid perfluorohexane and optical fuses-blink (vaporize and recondense). That is, they change their state from liquid nanodroplets to gas microbubbles, and then back to liquid nanodroplets. In their gaseous microbubble state, the LANDs provide high-contrast ultrasound, but the microbubbles formed in situ typically recondense in tens of milliseconds. As a result, LAND visualization by standard, real-time ultrasound is limited. However, the periodic optical triggering of LANDs allows us to observe corresponding transient, periodic changes in ultrasound contrast. This study formulates a probability function that measures how ultrasound temporal signals vary in periodicity. Then, the estimated probability is mapped onto a B-scan image to construct a LAND-localized, contrast-enhanced image. We verified our method through phantom and in vivo experiments using an ultrasound system (Vevo 2100, FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) operating with a 40-MHz linear array and interfaced with a 10 Hz Nd:YAG laser (Phocus, Opotek Inc., Carlsbad, CA, USA) operating at the fundamental 1064 nm wavelength.
From the phantom study, the results showed improvements in the contrast-to-noise ratio of our approach over conventional ultrasound ranging from 129% to 267%, with corresponding execution times of 0.10 to 0.29 s, meaning that the developed method is computationally efficient while yielding high-contrast ultrasound. Furthermore, in vivo sentinel lymph node (SLN) imaging results demonstrated that our technique could accurately identify the SLN.
The results indicate that our approach enables efficient and robust LAND localization in real time with substantially improved contrast, which is essential for the successful translation of this contrast agent platform to clinical settings.
本研究介绍了一种实时对比增强超声成像方法,使用最近开发的激光激活纳米液滴(LANDs),这是一类新的相变型纳米级造影剂,可提供可感知的、持续的高强度超声对比。
响应于脉冲激光照射,含有液态全氟己烷和光学引信的 LANDs 闪烁(蒸发和再冷凝)。也就是说,它们的状态从液态纳米液滴变为气态微泡,然后再回到液态纳米液滴。在气态微泡状态下,LANDs 提供高强度超声,但原位形成的微泡通常在数十毫秒内再冷凝。因此,标准实时超声对 LANDs 的可视化受到限制。然而,LANDs 的周期性光学触发允许我们观察到相应的超声对比的瞬态、周期性变化。本研究提出了一种概率函数,用于测量超声时变信号的周期性变化。然后,将估计的概率映射到 B 扫描图像上,以构建 LAND 定位的、对比度增强的图像。我们通过使用配备 40MHz 线性阵列的超声系统(Vevo 2100,FUJIFILM VisualSonics,Inc.,多伦多,ON,加拿大)和与基本 1064nm 波长的 10Hz Nd:YAG 激光(Phocus,Opotek Inc.,Carlsbad,CA,USA)接口的体内实验验证了我们的方法。
从体模研究结果来看,与传统超声相比,我们的方法在对比度噪声比方面的改善幅度在 129%至 267%之间,相应的执行时间为 0.10 至 0.29s,这意味着所开发的方法在产生高强度超声的同时具有计算效率。此外,体内前哨淋巴结(SLN)成像结果表明,我们的技术能够准确识别 SLN。
结果表明,我们的方法能够以显著提高的对比度实时有效地进行 LAND 定位,这对于成功将这种造影剂平台转化为临床应用至关重要。