Suppr超能文献

一种基于图像形成模型的彩色视网膜图像增强方法。

An enhancement method for color retinal images based on image formation model.

作者信息

Xiong Li, Li Huiqi, Xu Liang

机构信息

School of Information and Electronics, Beijing Institute of Technology, No.5 South Zhong Guan Cun Street, Haidian District, Beijing 100081, China.

Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing 100730, China.

出版信息

Comput Methods Programs Biomed. 2017 May;143:137-150. doi: 10.1016/j.cmpb.2017.02.026. Epub 2017 Mar 7.

Abstract

BACKGROUND AND OBJECTIVE

The good quality of color retinal image is essential for doctors to make a reliable diagnose in clinics. Due to major reasons like acquisition process and retinal diseases, most retinal images can show poor illuminance, blur and low contrast, further impeding the process of identifying the underlying retinal condition.

METHODS

Image formation model of scattering is proposed to enhance color retinal images in this paper. Two parameters of this model, background illuminance and transmission map, are estimated based on extracted background and foreground. The complex nature of the foreground of a retinal image, involving pixels with both low and high intensity, posed a challenge to the proper extraction of these pixels. Therefore, a new method combining Mahalanobis distance discrimination and global spatial entropy-based contrast enhancement is proposed to extract foreground pixels. It extracts background and foreground in high intensity region and low intensity region respectively and it can perform well in blurry image with tiny intensity range.

RESULTS

The proposed method is evaluated using 319 color retinal images from three different databases. Experimental results indicated that the proposed method can perform well on illumination problems, contrast enhancement and color preservation.

CONCLUSION

This study proposes a new method of enhancing overall retinal image and produces better enhancement images than several state-of-the-art algorithms, especially for blurry retinal images. This method can facilitate analysis and reliable diagnosis for both ophthalmologists and computer-aided analysis.

摘要

背景与目的

高质量的视网膜彩色图像对于医生在临床中做出可靠诊断至关重要。由于采集过程和视网膜疾病等主要原因,大多数视网膜图像会出现照度不佳、模糊和对比度低的情况,进一步阻碍了识别潜在视网膜状况的进程。

方法

本文提出了散射图像形成模型来增强视网膜彩色图像。基于提取的背景和前景估计该模型的两个参数,即背景照度和透射图。视网膜图像前景的复杂性,涉及低强度和高强度像素,对这些像素的正确提取提出了挑战。因此,提出了一种结合马氏距离判别和基于全局空间熵的对比度增强的新方法来提取前景像素。它分别在高强度区域和低强度区域提取背景和前景,并且在强度范围微小的模糊图像中也能表现良好。

结果

使用来自三个不同数据库的319幅视网膜彩色图像对所提出的方法进行了评估。实验结果表明,该方法在光照问题、对比度增强和颜色保留方面表现良好。

结论

本研究提出了一种增强整体视网膜图像的新方法,并且生成的增强图像比几种现有算法更好,特别是对于模糊的视网膜图像。该方法可为眼科医生和计算机辅助分析提供便利,有助于分析和进行可靠诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验