Suppr超能文献

基于深度学习的眼底图像增强框架。

A deep learning-based framework for retinal fundus image enhancement.

机构信息

Department of Electrical and Computer Engineering, ASRI, Seoul National University, Seoul, South Korea.

Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.

出版信息

PLoS One. 2023 Mar 16;18(3):e0282416. doi: 10.1371/journal.pone.0282416. eCollection 2023.

Abstract

PROBLEM

Low-quality fundus images with complex degredation can cause costly re-examinations of patients or inaccurate clinical diagnosis.

AIM

This study aims to create an automatic fundus macular image enhancement framework to improve low-quality fundus images and remove complex image degradation.

METHOD

We propose a new deep learning-based model that automatically enhances low-quality retinal fundus images that suffer from complex degradation. We collected a dataset, comprising 1068 pairs of high-quality (HQ) and low-quality (LQ) fundus images from the Kangbuk Samsung Hospital's health screening program and ophthalmology department from 2017 to 2019. Then, we used these dataset to develop data augmentation methods to simulate major aspects of retinal image degradation and to propose a customized convolutional neural network (CNN) architecture to enhance LQ images, depending on the nature of the degradation. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), r-value (linear index of fuzziness), and proportion of ungradable fundus photographs before and after the enhancement process are calculated to assess the performance of proposed model. A comparative evaluation is conducted on an external database and four different open-source databases.

RESULTS

The results of the evaluation on the external test dataset showed an significant increase in PSNR and SSIM compared with the original LQ images. Moreover, PSNR and SSIM increased by over 4 dB and 0.04, respectively compared with the previous state-of-the-art methods (P < 0.05). The proportion of ungradable fundus photographs decreased from 42.6% to 26.4% (P = 0.012).

CONCLUSION

Our enhancement process improves LQ fundus images that suffer from complex degradation significantly. Moreover our customized CNN achieved improved performance over the existing state-of-the-art methods. Overall, our framework can have a clinical impact on reducing re-examinations and improving the accuracy of diagnosis.

摘要

问题

低质量且伴有复杂退化的眼底图像可能导致患者进行昂贵的复查或临床诊断不准确。

目的

本研究旨在创建一个自动眼底黄斑图像增强框架,以改善低质量的眼底图像并消除复杂的图像退化。

方法

我们提出了一种新的基于深度学习的模型,该模型可以自动增强受复杂退化影响的低质量视网膜眼底图像。我们收集了一个数据集,包含 2017 年至 2019 年来自康伯斯三星医院健康筛查计划和眼科部门的 1068 对高质量(HQ)和低质量(LQ)眼底图像。然后,我们使用这些数据集开发数据增强方法来模拟视网膜图像退化的主要方面,并提出一种定制的卷积神经网络(CNN)架构,根据退化的性质增强 LQ 图像。在增强前后计算峰值信噪比(PSNR)、结构相似性指数测量(SSIM)、r 值(模糊的线性指数)和不可分级眼底照片的比例,以评估所提出模型的性能。在外部数据库和四个不同的开源数据库上进行了比较评估。

结果

在外部测试数据集上的评估结果表明,与原始 LQ 图像相比,PSNR 和 SSIM 有显著提高。此外,与以前的最先进方法相比,PSNR 和 SSIM 分别提高了超过 4dB 和 0.04(P<0.05)。不可分级眼底照片的比例从 42.6%下降到 26.4%(P=0.012)。

结论

我们的增强过程显著改善了受复杂退化影响的低质量眼底图像。此外,我们的定制 CNN 实现了优于现有最先进方法的性能提升。总的来说,我们的框架可以在减少复查和提高诊断准确性方面产生临床影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85f6/10019688/a0d06548c8df/pone.0282416.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验