Suppr超能文献

具有乘积随机性的生物网络非线性朗之万模型:施纳肯贝格模型的情况

NONLINEAR LANGEVIN MODEL WITH PRODUCT STOCHASTICITY FOR BIOLOGICAL NETWORKS: THE CASE OF THE SCHNAKENBERG MODEL.

作者信息

Cao Youfang, Liang Jie

机构信息

Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Bioengineering, University of Illinois at Chicago, USA.

出版信息

J Syst Sci Complex. 2010 Oct;23(5):896-905. doi: 10.1007/s11424-010-0213-0. Epub 2010 Nov 9.

Abstract

Langevin equation is widely used to study the stochastic effects in molecular networks, as it often approximates well the underlying chemical master equation. However, frequently it is not clear when such an approximation is applicable and when it breaks down. This paper studies the simple Schnakenberg model consisting of three reversible reactions and two molecular species whose concentrations vary. To reduce the residual errors from the conventional formulation of the Langevin equation, the authors propose to explicitly model the effective coupling between macroscopic concentrations of different molecular species. The results show that this formulation is effective in correcting residual errors from the original uncoupled Langevin equation and can approximate the underlying chemical master equation very accurately.

摘要

朗之万方程被广泛用于研究分子网络中的随机效应,因为它常常能很好地近似基础的化学主方程。然而,通常并不清楚这种近似何时适用以及何时失效。本文研究了由三个可逆反应和两种浓度可变的分子物种组成的简单施纳肯贝格模型。为了减少传统朗之万方程公式中的残余误差,作者提议明确地对不同分子物种宏观浓度之间的有效耦合进行建模。结果表明,这种公式在纠正原始非耦合朗之万方程的残余误差方面是有效的,并且能够非常准确地近似基础的化学主方程。

相似文献

1
NONLINEAR LANGEVIN MODEL WITH PRODUCT STOCHASTICITY FOR BIOLOGICAL NETWORKS: THE CASE OF THE SCHNAKENBERG MODEL.
J Syst Sci Complex. 2010 Oct;23(5):896-905. doi: 10.1007/s11424-010-0213-0. Epub 2010 Nov 9.
4
How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
J Chem Phys. 2011 Aug 28;135(8):084103. doi: 10.1063/1.3625958.
5
How noise statistics impact models of enzyme cycles.
J Chem Phys. 2008 Jun 14;128(22):225101. doi: 10.1063/1.2929841.
6
Model reduction for stochastic chemical systems with abundant species.
J Chem Phys. 2015 Dec 7;143(21):214105. doi: 10.1063/1.4936394.
7
Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.
J Math Neurosci. 2011 May 3;1(1):2. doi: 10.1186/2190-8567-1-2.
8
An adaptive stepsize method for the chemical Langevin equation.
J Chem Phys. 2012 May 14;136(18):184101. doi: 10.1063/1.4711143.
10
The complex chemical Langevin equation.
J Chem Phys. 2014 Jul 14;141(2):024103. doi: 10.1063/1.4885345.

引用本文的文献

1
Discrete flux and velocity fields of probability and their global maps in reaction systems.
J Chem Phys. 2018 Nov 14;149(18):185101. doi: 10.1063/1.5050808.

本文引用的文献

4
Stochastic simulation of chemical kinetics.
Annu Rev Phys Chem. 2007;58:35-55. doi: 10.1146/annurev.physchem.58.032806.104637.
6
The finite state projection algorithm for the solution of the chemical master equation.
J Chem Phys. 2006 Jan 28;124(4):044104. doi: 10.1063/1.2145882.
7
Concentration fluctuations in a mesoscopic oscillating chemical reaction system.
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10376-81. doi: 10.1073/pnas.152007599. Epub 2002 Jul 17.
8
Simple chemical reaction systems with limit cycle behaviour.
J Theor Biol. 1979 Dec 7;81(3):389-400. doi: 10.1016/0022-5193(79)90042-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验