Mathematical Institute, University of Oxford, 24-29 St, Giles', Oxford, OX1 3LB, UK.
J Math Neurosci. 2011 May 3;1(1):2. doi: 10.1186/2190-8567-1-2.
We extend the theory of noise-induced phase synchronization to the case of a neural master equation describing the stochastic dynamics of an ensemble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise. The master equation formulation of stochastic neurodynamics represents the state of each population by the number of currently active neurons, and the state transitions are chosen so that deterministic Wilson-Cowan rate equations are recovered in the mean-field limit. We apply phase reduction and averaging methods to a corresponding Langevin approximation of the master equation in order to determine how intrinsic noise disrupts synchronization of the population oscillators driven by a common extrinsic noise source. We illustrate our analysis by considering one of the simplest networks known to generate limit cycle oscillations at the population level, namely, a pair of mutually coupled excitatory (E) and inhibitory (I) subpopulations. We show how the combination of intrinsic independent noise and extrinsic common noise can lead to clustering of the population oscillators due to the multiplicative nature of both noise sources under the Langevin approximation. Finally, we show how a similar analysis can be carried out for another simple population model that exhibits limit cycle oscillations in the deterministic limit, namely, a recurrent excitatory network with synaptic depression; inclusion of synaptic depression into the neural master equation now generates a stochastic hybrid system.
我们将噪声诱导相位同步理论扩展到描述由无耦合神经元群体振荡器组成的集合的随机动力学的神经主方程的情况,这些振荡器具有内在噪声和外在噪声。随机神经动力学的主方程表述通过当前活跃神经元的数量来表示每个群体的状态,并且状态转换被选择为使得在平均场极限下恢复确定性 Wilson-Cowan 率方程。我们将主方程的相应朗之万近似应用于相还原和平均方法,以确定内在噪声如何破坏由共同外在噪声源驱动的群体振荡器的同步。我们通过考虑最简化的网络之一来阐明我们的分析,该网络在群体水平上产生极限环振荡,即,一对相互耦合的兴奋性 (E) 和抑制性 (I) 亚群。我们展示了内在独立噪声和外在共同噪声的组合如何由于两种噪声源在朗之万近似下的乘法性质而导致群体振荡器的聚类。最后,我们展示了如何对另一个在确定性极限下表现出极限环振荡的简单群体模型(即具有突触抑制的递归兴奋性网络)进行类似的分析;将突触抑制纳入神经主方程现在生成随机混合系统。