Suppr超能文献

YOLOv5-FPN:一种用于荧光图像中多尺寸细胞计数的稳健框架。

YOLOv5-FPN: A Robust Framework for Multi-Sized Cell Counting in Fluorescence Images.

作者信息

Aldughayfiq Bader, Ashfaq Farzeen, Jhanjhi N Z, Humayun Mamoona

机构信息

Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia.

School of Computer Science (SCS), Taylor's University, Subang Jaya 47500, Malaysia.

出版信息

Diagnostics (Basel). 2023 Jul 5;13(13):2280. doi: 10.3390/diagnostics13132280.

Abstract

Cell counting in fluorescence microscopy is an essential task in biomedical research for analyzing cellular dynamics and studying disease progression. Traditional methods for cell counting involve manual counting or threshold-based segmentation, which are time-consuming and prone to human error. Recently, deep learning-based object detection methods have shown promising results in automating cell counting tasks. However, the existing methods mainly focus on segmentation-based techniques that require a large amount of labeled data and extensive computational resources. In this paper, we propose a novel approach to detect and count multiple-size cells in a fluorescence image slide using You Only Look Once version 5 (YOLOv5) with a feature pyramid network (FPN). Our proposed method can efficiently detect multiple cells with different sizes in a single image, eliminating the need for pixel-level segmentation. We show that our method outperforms state-of-the-art segmentation-based approaches in terms of accuracy and computational efficiency. The experimental results on publicly available datasets demonstrate that our proposed approach achieves an average precision of 0.8 and a processing time of 43.9 ms per image. Our approach addresses the research gap in the literature by providing a more efficient and accurate method for cell counting in fluorescence microscopy that requires less computational resources and labeled data.

摘要

荧光显微镜中的细胞计数是生物医学研究中分析细胞动态和研究疾病进展的一项重要任务。传统的细胞计数方法包括手动计数或基于阈值的分割,这些方法既耗时又容易出现人为误差。最近,基于深度学习的目标检测方法在自动化细胞计数任务方面显示出了有前景的结果。然而,现有方法主要集中在基于分割的技术上,这需要大量的标记数据和大量的计算资源。在本文中,我们提出了一种新颖的方法,使用带有特征金字塔网络(FPN)的You Only Look Once版本5(YOLOv5)来检测和计数荧光图像载玻片中的多种尺寸细胞。我们提出的方法可以在单个图像中高效地检测不同尺寸的多个细胞,无需进行像素级分割。我们表明,我们的方法在准确性和计算效率方面优于基于分割的现有方法。在公开可用数据集上的实验结果表明,我们提出的方法实现了0.8的平均精度,每张图像的处理时间为43.9毫秒。我们的方法通过提供一种在荧光显微镜中进行细胞计数的更高效、准确的方法来解决文献中的研究空白,该方法需要更少的计算资源和标记数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3608/10341068/6085f876dea8/diagnostics-13-02280-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验