a Department of Clinical Pharmacology , University Medical Center Göttingen , Göttingen , Germany.
b Chronix Biomedical GmbH , Göttingen , Germany.
Crit Rev Clin Lab Sci. 2017 May;54(3):205-218. doi: 10.1080/10408363.2017.1299683. Epub 2017 Apr 10.
High-quality genomic analysis is critical for personalized pharmacotherapy in patients with cancer. Tumor-specific genomic alterations can be identified in cell-free DNA (cfDNA) from patient blood samples and can complement biopsies for real-time molecular monitoring of treatment, detection of recurrence, and tracking resistance. cfDNA can be especially useful when tumor tissue is unavailable or insufficient for testing. For blood-based genomic profiling, next-generation sequencing (NGS) and droplet digital PCR (ddPCR) have been successfully applied. The US Food and Drug Administration (FDA) recently approved the first such "liquid biopsy" test for EGFR mutations in patients with non-small cell lung cancer (NSCLC). Such non-invasive methods allow for the identification of specific resistance mutations selected by treatment, such as EGFR T790M, in patients with NSCLC treated with gefitinib. Chromosomal aberration pattern analysis by low coverage whole genome sequencing is a more universal approach based on genomic instability. Gains and losses of chromosomal regions have been detected in plasma tumor-specific cfDNA as copy number aberrations and can be used to compute a genomic copy number instability (CNI) score of cfDNA. A specific CNI index obtained by massive parallel sequencing discriminated those patients with prostate cancer from both healthy controls and men with benign prostatic disease. Furthermore, androgen receptor gene aberrations in cfDNA were associated with therapeutic resistance in metastatic castration resistant prostate cancer. Change in CNI score has been shown to serve as an early predictor of response to standard chemotherapy for various other cancer types (e.g. NSCLC, colorectal cancer, pancreatic ductal adenocarcinomas). CNI scores have also been shown to predict therapeutic responses to immunotherapy. Serial genomic profiling can detect resistance mutations up to 16 weeks before radiographic progression. There is a potential for cost savings when ineffective use of expensive new anticancer drugs is avoided or halted. Challenges for routine implementation of liquid biopsy tests include the necessity of specialized personnel, instrumentation, and software, as well as further development of quality management (e.g. external quality control). Validation of blood-based tumor genomic profiling in additional multicenter outcome studies is necessary; however, cfDNA monitoring can provide clinically important actionable information for precision oncology approaches.
高质量的基因组分析对于癌症患者的个体化药物治疗至关重要。可以从患者的血液样本中的无细胞 DNA(cfDNA)中鉴定出肿瘤特异性的基因组改变,并可以补充活检,实时监测治疗的分子变化、检测复发和跟踪耐药性。当肿瘤组织无法获得或不足以进行检测时,cfDNA 特别有用。已经成功地将下一代测序(NGS)和液滴数字 PCR(ddPCR)应用于基于血液的基因组分析。美国食品和药物管理局(FDA)最近批准了首个用于非小细胞肺癌(NSCLC)患者的 EGFR 突变的“液体活检”测试。这种非侵入性方法允许识别由治疗选择的特定耐药突变,例如接受吉非替尼治疗的 NSCLC 患者中的 EGFR T790M。基于基因组不稳定性的低覆盖全基因组测序的染色体畸变模式分析是一种更通用的方法。已经在血浆肿瘤特异性 cfDNA 中检测到染色体区域的增益和丢失作为拷贝数异常,并且可以用于计算 cfDNA 的基因组拷贝数不稳定性(CNI)评分。通过大规模平行测序获得的特定 CNI 指数可以将前列腺癌患者与健康对照者和良性前列腺疾病患者区分开来。此外,cfDNA 中的雄激素受体基因异常与转移性去势抵抗性前列腺癌的治疗耐药性相关。CNI 评分的变化已被证明可作为各种其他癌症类型(例如 NSCLC、结直肠癌、胰腺导管腺癌)对标准化疗反应的早期预测指标。CNI 评分也已被证明可预测免疫治疗的治疗反应。连续的基因组分析可以在影像学进展前 16 周检测到耐药突变。避免或停止无效使用昂贵的新型抗癌药物可节省成本。液体活检测试的常规实施面临的挑战包括对专业人员、仪器和软件的需求,以及质量管理(例如外部质量控制)的进一步发展。需要在其他多中心结局研究中验证基于血液的肿瘤基因组分析;然而,cfDNA 监测可为精准肿瘤学方法提供具有临床意义的可操作信息。