Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and The Laboratory for Synthetic-Biologic Interactions, Texas A&M University , College Station, Texas 77842-3012, United States.
J Am Chem Soc. 2017 Apr 19;139(15):5467-5473. doi: 10.1021/jacs.7b01116. Epub 2017 Apr 10.
A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3',5'-backbone linkages. A thymidine-derived bicyclic monomer, 3',5'-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3',5'-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3',5'-cyclic monomer can promote ring-opening polymerization to afford the resulting poly(3',5'-cyclic 3-(3-butenyl) thymidine ethylphosphate)s with low dispersities (Đ < 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.
跨越合成化学和生物学的重大挑战是可扩展地生产生物大分子的功能类似物。我们专注于使用带有非天然碱基的脱氧核苷构建块来开发一种合成方法,该方法允许构建高分子量的脱氧核苷酸聚合物。我们的六元环状磷酸酯开环聚合策略在此得到了证明,最初通过制备新型聚磷酸酯来实现,这些聚磷酸酯由丁烯基功能化的脱氧核糖核苷重复单元组成,通过 3',5'-骨架连接。通过胸腺嘧啶衍生的双环单体,即 3',5'-环 3-(3-丁烯基)胸腺嘧啶乙基磷酸酯,通过胸腺嘧啶的丁烯化和 N,N-二甲基-4-氨基吡啶促进的非对映选择性环化,可以直接分两步合成。来自脱氧核糖的六元 3',5'-环状磷酸酯的计算模型表明应变能至少比六元单环磷酸酯,即 2-乙氧基-1,3,2-二氧杂磷杂环戊烷 2-氧化物高出 5.4 kcal/mol。这些计算结果支持了这样的假设,即受应变的 3',5'-环状单体可以促进开环聚合,从而得到具有低分散度(Đ<1.10)的相应聚(3',5'-环 3-(3-丁烯基)胸腺嘧啶乙基磷酸酯)。这种先进的设计结合了天然产物衍生材料和功能性、可降解聚合物的优点,为功能性、合成衍生的聚脱氧核糖核苷酸类似物材料提供了一个新的平台。