Easterling Charles P, Kubo Tomohiro, Orr Zachary M, Fanucci Gail E, Sumerlin Brent S
George & Josephine Butler Polymer Research Laboratory , Center for Macromolecular Science & Engineering , Department of Chemistry , University of Florida , PO Box 117200 , Gainesville , FL 32611-7200 , USA . Email:
Chem Sci. 2017 Nov 1;8(11):7705-7709. doi: 10.1039/c7sc02574b. Epub 2017 Sep 29.
The direct transformation of commercially available commodity polyacrylates into value-added materials was achieved. We demonstrate how 1,5,7-triazabicyclo[4.4.0]dec-5-ene, serving as a nucleophilic catalyst, can be used to catalyze acyl substitution reactions of acrylic polymers in the presence of alcohol and amine nucleophiles. Furthermore, we found that organocatalytic transesterification exhibits high selectivity towards sterically unhindered esters, thus providing a new route towards site-selective acyl substitution of macromolecular materials. Combining this methodology with reversible-deactivation radical polymerization (RDRP) techniques such as reversible addition-fragmentation chain-transfer (RAFT) polymerization allowed for the precise functionalization of sterically-differentiated acrylic copolymers and polymeric chain ends. We envision this approach to expedite functional polymer synthesis and provide access to functional macromolecules prepared from inexpensive, hydrolytically-stable polymeric precursors.
实现了将市售商品聚丙烯酸酯直接转化为高附加值材料。我们展示了1,5,7-三氮杂双环[4.4.0]癸-5-烯作为亲核催化剂,如何在醇和胺亲核试剂存在下催化丙烯酸聚合物的酰基取代反应。此外,我们发现有机催化的酯交换反应对空间位阻较小的酯具有高选择性,从而为高分子材料的位点选择性酰基取代提供了一条新途径。将这种方法与可逆失活自由基聚合(RDRP)技术(如可逆加成-断裂链转移(RAFT)聚合)相结合,能够对空间结构不同的丙烯酸共聚物和聚合物链端进行精确功能化。我们设想这种方法能够加速功能聚合物的合成,并提供从廉价、水解稳定的聚合物前体制备功能大分子的途径。