Suppr超能文献

采用连续提取法研究锰的形态分布,评估重型设备制造过程中焊工进行气体金属电弧焊时的暴露情况。

Exploring Manganese Fractionation Using a Sequential Extraction Method to Evaluate Welders' Gas Metal Arc Welding Exposures during Heavy Equipment Manufacturing.

机构信息

Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.

Chemical Exposure and Monitoring Branch, Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.

出版信息

Ann Work Expo Health. 2017 Jan 1;61(1):123-134. doi: 10.1093/annweh/wxw005.

Abstract

The National Institute for Occupational Safety and Health (NIOSH) has conducted an occupational exposure assessment study of manganese (Mn) in welding fume at three factories where heavy equipment was manufactured. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. One hundred nine worker-days were monitored for either total or respirable Mn during gas metal arc welding. The samples were analyzed using an experimental method to separate different Mn fractions based on selective chemical solubility. The full-shift total particle size Mn time-weighted average (TWA) breathing zone concentrations ranged 0.38-26 for soluble Mn in a mild ammonium acetate solution; 3.2-170 for Mn0,2+ in acetic acid; 3.1-290 for Mn3+,4+ in hydroxylamine-hydrochloride; and non-detectable (ND)-130 µg m-3 for insoluble Mn fractions in hydrochloric and nitric acid. The summation of all the total particulate Mn TWA fractions yielded results that ranged from 6.9 to 610 µg m-3. The range of respirable size Mn TWA concentrations were 0.33-21 for soluble Mn; 15-140 for Mn0,2+; 14-170 for Mn3+,4+; 5.3-230 for insoluble Mn; and 36-530 µg m-3 for Mn (sum of fractions). Total particulate TWA GM concentrations of the Mn (sum) were 53 (GSD = 2.5), 150 (GSD = 1.7), and 120 (GSD = 1.8) µg m-3 for the three separate factories. Although all of the workers' exposures were measured below the OSHA regulatory permissible exposure limit and NIOSH recommended exposure limit for Mn, 70 welders' exposures exceeded the ACGIH Threshold Limit Values® for total Mn (100 µg m-3) and 29 exceeded the recently adopted respirable Mn TLV (20 µg m-3). This study shows that a welding fume exposure control and management program is warranted for Mn, which includes improved exhaust ventilation and may necessitate the use of respiratory protection, especially for welding parts that impede air circulation.

摘要

美国职业安全与健康研究所(NIOSH)在三家重型设备制造工厂进行了一项焊接烟尘中锰(Mn)的职业暴露评估研究。本研究的目的是使用顺序提取程序评估不同 Mn 馏分的暴露情况。在气体金属电弧焊过程中,109 个工作日的总或可呼吸 Mn 进行了监测。使用实验方法分析样品,根据选择性化学溶解度分离不同的 Mn 馏分。整个班次总颗粒 Mn 时间加权平均值(TWA)呼吸区浓度范围为 0.38-26 可溶性 Mn 在温和的乙酸铵溶液中;3.2-170 用于 Mn0,2+在乙酸中;3.1-290 用于 Mn3+,4+在羟胺盐酸盐中;盐酸和硝酸中不可检测(ND)-130µg m-3 的不溶性 Mn 馏分。所有总颗粒物 Mn TWA 馏分的总和结果范围为 6.9 至 610µg m-3。可呼吸大小 Mn TWA 浓度范围为 0.33-21 可溶性 Mn;15-140 用于 Mn0,2+;14-170 用于 Mn3+,4+;5.3-230 用于不溶性 Mn;36-530µg m-3 用于 Mn(馏分总和)。三个单独工厂的 Mn(总和)总颗粒物 TWA GM 浓度分别为 53(GSD = 2.5)、150(GSD = 1.7)和 120(GSD = 1.8)µg m-3。尽管所有工人的暴露量均低于 OSHA 监管可接受暴露限值和 NIOSH 推荐的 Mn 暴露限值,但 70 名焊工的暴露量超过了 ACGIH 总 Mn 阈值限值®(100µg m-3),29 名焊工超过了最近通过的可呼吸 Mn TLV(20µg m-3)。本研究表明,需要对 Mn 进行焊接烟尘暴露控制和管理计划,其中包括改进排气通风,并可能需要使用呼吸保护装置,尤其是对于阻碍空气流通的焊接部件。

相似文献

3
Occupational survey of airborne metal exposures to welders, metalworkers, and bystanders in small fabrication shops.
J Occup Environ Hyg. 2019 Jun;16(6):410-421. doi: 10.1080/15459624.2019.1603389. Epub 2019 May 14.
6
Toenail Manganese: A Sensitive and Specific Biomarker of Exposure to Manganese in Career Welders.
Ann Work Expo Health. 2017 Dec 15;62(1):101-111. doi: 10.1093/annweh/wxx091.
8
Occupational Exposure to Inhalable Manganese at German Workplaces.
Ann Work Expo Health. 2017 Nov 10;61(9):1108-1117. doi: 10.1093/annweh/wxx080.
9
Workplace exposure to particulate matter, bio-accessible, and non-soluble metal compounds during hot work processes.
J Occup Environ Hyg. 2019 Jun;16(6):378-386. doi: 10.1080/15459624.2019.1594841. Epub 2019 Apr 15.
10
Manganese exposures during shielded metal arc welding (SMAW) in an enclosed space.
J Occup Environ Hyg. 2005 Aug;2(8):375-82. doi: 10.1080/15459620591007736.

本文引用的文献

2
Manganese speciation of laboratory-generated welding fumes.
Anal Methods. 2015;7:6403-6410. doi: 10.1039/C5AY01147G.
4
Neurological outcomes associated with low-level manganese exposure in an inception cohort of asymptomatic welding trainees.
Scand J Work Environ Health. 2015 Jan;41(1):94-101. doi: 10.5271/sjweh.3466. Epub 2014 Nov 7.
5
The bioavailability of manganese in welders in relation to its solubility in welding fumes.
Environ Sci Process Impacts. 2013 Feb;15(2):357-65. doi: 10.1039/c2em30750b. Epub 2012 Dec 6.
6
Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.
Ann Occup Hyg. 2013 Jan;57(1):6-25. doi: 10.1093/annhyg/mes053. Epub 2012 Sep 20.
7
Neuromotor function in ship welders after cessation of manganese exposure.
Int Arch Occup Environ Health. 2012 Aug;85(6):703-13. doi: 10.1007/s00420-011-0716-6. Epub 2011 Oct 29.
8
Analysis of lognormally distributed exposure data with repeated measures and values below the limit of detection using SAS.
Ann Occup Hyg. 2011 Jan;55(1):97-112. doi: 10.1093/annhyg/meq061. Epub 2010 Dec 20.
9
Are there common biochemical and molecular mechanisms controlling manganism and parkisonism.
Neuromolecular Med. 2009;11(4):281-96. doi: 10.1007/s12017-009-8088-8. Epub 2009 Sep 16.
10
Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes.
Ann Occup Hyg. 2009 Jun;53(4):333-40. doi: 10.1093/annhyg/mep013. Epub 2009 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验