Suppr超能文献

通过定量质谱法监测蛋白水解加工事件。

Monitoring proteolytic processing events by quantitative mass spectrometry.

作者信息

Coradin Mariel, Karch Kelly R, Garcia Benjamin A

机构信息

a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA.

出版信息

Expert Rev Proteomics. 2017 May;14(5):409-418. doi: 10.1080/14789450.2017.1316977. Epub 2017 Apr 17.

Abstract

Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.

摘要

蛋白酶活性在包括基因表达、蛋白质周转和发育在内的多种生物过程中起着关键作用。这些蛋白质的失调与许多癌症类型相关,如前列腺癌、乳腺癌和皮肤癌。因此,鉴定蛋白酶底物将为理解蛋白水解相关病理提供关键信息。涵盖领域:综述了基于蛋白质组学的研究蛋白水解活性的方法,重点关注底物鉴定、蛋白酶特异性及其在系统生物学中的应用。强调了它们的定量策略、挑战和陷阱,并突出了蛋白酶功能异常的生物学意义。专家评论:蛋白酶活性失调是某些疾病病理(如癌症)的一个标志。当前的生化方法通量较低,有些方法受到获得可靠结果所需样品量的限制。基于质谱的蛋白质组学提供了一个研究蛋白酶活性的合适平台,可提供有关底物特异性和绘制切割位点的信息。

相似文献

1
Monitoring proteolytic processing events by quantitative mass spectrometry.
Expert Rev Proteomics. 2017 May;14(5):409-418. doi: 10.1080/14789450.2017.1316977. Epub 2017 Apr 17.
2
N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
Physiol Plant. 2012 May;145(1):5-17. doi: 10.1111/j.1399-3054.2011.01536.x. Epub 2011 Dec 7.
3
Profiling protease activities by dynamic proteomics workflows.
Proteomics. 2012 Feb;12(4-5):587-96. doi: 10.1002/pmic.201100399. Epub 2012 Jan 23.
4
Mass spectrometry-based proteomics strategies for protease cleavage site identification.
Proteomics. 2012 Feb;12(4-5):516-29. doi: 10.1002/pmic.201100379. Epub 2012 Jan 19.
5
Current trends and challenges in proteomic identification of protease substrates.
Biochimie. 2016 Mar;122:77-87. doi: 10.1016/j.biochi.2015.10.017. Epub 2015 Oct 26.
6
Protease proteomics: revealing protease in vivo functions using systems biology approaches.
Mol Aspects Med. 2008 Oct;29(5):339-58. doi: 10.1016/j.mam.2008.04.003. Epub 2008 May 1.
7
Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
Biochimie. 2010 Nov;92(11):1705-14. doi: 10.1016/j.biochi.2010.04.027. Epub 2010 May 20.
8
Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives.
Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt B):2191-2199. doi: 10.1016/j.bbamcr.2017.07.002. Epub 2017 Jul 12.
9
N-Terminomics Strategies for Protease Substrates Profiling.
Molecules. 2021 Aug 3;26(15):4699. doi: 10.3390/molecules26154699.
10
Quantitative proteomics in plant protease substrate identification.
New Phytol. 2018 May;218(3):936-943. doi: 10.1111/nph.14587. Epub 2017 May 11.

本文引用的文献

1
Elevated expression of KLK8 predicts poor prognosis in colorectal cancer.
Biomed Pharmacother. 2017 Apr;88:595-602. doi: 10.1016/j.biopha.2017.01.112. Epub 2017 Jan 28.
2
Intramembrane proteases as drug targets.
FEBS J. 2017 May;284(10):1489-1502. doi: 10.1111/febs.13979. Epub 2017 Jan 6.
3
Proteomic Substrate Identification for Membrane Proteases in the Brain.
Front Mol Neurosci. 2016 Oct 13;9:96. doi: 10.3389/fnmol.2016.00096. eCollection 2016.
4
Low Proteolytic Clipping of Histone H3 in Cervical Cancer.
J Cancer. 2016 Aug 17;7(13):1856-1860. doi: 10.7150/jca.15605. eCollection 2016.
6
TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors.
Cell Rep. 2016 Aug 9;16(6):1762-1773. doi: 10.1016/j.celrep.2016.06.086. Epub 2016 Jul 28.
7
Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration.
Cell Res. 2016 Aug;26(8):886-900. doi: 10.1038/cr.2016.87. Epub 2016 Jul 22.
8
Prostate Cancer-Associated Kallikrein-Related Peptidase 4 Activates Matrix Metalloproteinase-1 and Thrombospondin-1.
J Proteome Res. 2016 Aug 5;15(8):2466-78. doi: 10.1021/acs.jproteome.5b01148. Epub 2016 Jul 27.
9
The world of protein acetylation.
Biochim Biophys Acta. 2016 Oct;1864(10):1372-401. doi: 10.1016/j.bbapap.2016.06.007. Epub 2016 Jun 11.
10
Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
Mol Cell Proteomics. 2016 Jul;15(7):2515-24. doi: 10.1074/mcp.O115.056671. Epub 2016 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验