Suppr超能文献

通过基因组序列分析鉴定的伯克霍尔德菌假鼻疽亚种Bp1651中的抗生素抗性标记

Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis.

作者信息

Bugrysheva Julia V, Sue David, Gee Jay E, Elrod Mindy G, Hoffmaster Alex R, Randall Linnell B, Chirakul Sunisa, Tuanyok Apichai, Schweizer Herbert P, Weigel Linda M

机构信息

Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

出版信息

Antimicrob Agents Chemother. 2017 May 24;61(6). doi: 10.1128/AAC.00010-17. Print 2017 Jun.

Abstract

Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in , which codes for a class A β-lactamase and was previously implicated in resistance to β-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in may alter susceptibility to carbapenems in Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene , which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis.

摘要

Bp1651对几类通常用于治疗类鼻疽病有效的抗生素具有抗性,这些抗生素包括四环素类、磺胺类以及β-内酰胺类抗生素,如青霉素(阿莫西林-克拉维酸)、头孢菌素(头孢他啶)和碳青霉烯类抗生素(亚胺培南和美罗培南)。我们对Bp1651基因组进行了测序、组装和注释,并使用与敏感菌株的比较基因组分析、注释的关键词搜索、公开可用的抗菌药物抗性预测工具以及已发表的报告对该序列进行了分析。Bp1651序列中的100多个基因被确定可能与抗菌药物抗性有关。最值得注意的是,我们在编码A类β-内酰胺酶且先前与对β-内酰胺抗生素的抗性有关的基因中鉴定出三个先前未表征的点突变。这些突变导致氨基酸变化T147A、D240G和V261I。当将这些突变分别引入排除选择剂的菌株Bp82中时,发现D240G导致对头孢他啶的抗性,而T147A导致对阿莫西林-克拉维酸和亚胺培南的抗性。这项研究提供了首个证据,表明基因中的突变可能会改变菌株对碳青霉烯类抗生素的敏感性。另一个有趣的突变是影响二氢叶酸还原酶基因的点突变,这可能解释了该菌株对甲氧苄啶的抗性。Bp1651对氨基糖苷类抗生素敏感,这可能是由于AmrAB-OprA外排泵的转运亚基基因发生了移码突变。这些发现扩展了基因的作用,使其包括对碳青霉烯类抗生素的抗性,并可能有助于开发预测抗菌药物抗性的分子诊断方法,并为类鼻疽病的治疗提供指导。

相似文献

1
Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis.
Antimicrob Agents Chemother. 2017 May 24;61(6). doi: 10.1128/AAC.00010-17. Print 2017 Jun.
2
Mechanisms of Resistance to Folate Pathway Inhibitors in : Deviation from the Norm.
mBio. 2017 Sep 5;8(5):e01357-17. doi: 10.1128/mBio.01357-17.
6
Antimicrobial susceptibility and genetic characterisation of Burkholderia pseudomallei isolated from Malaysian patients.
ScientificWorldJournal. 2014;2014:132971. doi: 10.1155/2014/132971. Epub 2014 Oct 14.
8
Variations in ceftazidime and amoxicillin-clavulanate susceptibilities within a clonal infection of Burkholderia pseudomallei.
J Clin Microbiol. 2009 May;47(5):1556-8. doi: 10.1128/JCM.01657-08. Epub 2009 Mar 18.

引用本文的文献

1
Melioidosis pneumonia resulting from drowning after electrocution: a case report.
World J Emerg Med. 2025 Jul 1;16(4):401-403. doi: 10.5847/wjem.j.1920-8642.2025.071.
3
Identification of novel deletions as meropenem resistance mechanisms in clinical isolates.
Microbiol Spectr. 2025 Mar 26;13(5):e0193624. doi: 10.1128/spectrum.01936-24.
4
Imaging and clinical manifestations of hematogenous dissemination in melioidosis.
BMC Med Imaging. 2024 Nov 1;24(1):296. doi: 10.1186/s12880-024-01471-6.
8
Burkholderia pseudomallei and melioidosis.
Nat Rev Microbiol. 2024 Mar;22(3):155-169. doi: 10.1038/s41579-023-00972-5. Epub 2023 Oct 4.
9
Computational protein design repurposed to explore enzyme vitality and help predict antibiotic resistance.
Front Mol Biosci. 2023 Jan 9;9:905588. doi: 10.3389/fmolb.2022.905588. eCollection 2022.
10
Expression of virulence and antimicrobial related proteins in Burkholderia mallei and Burkholderia pseudomallei.
PLoS Negl Trop Dis. 2023 Jan 6;17(1):e0011006. doi: 10.1371/journal.pntd.0011006. eCollection 2023 Jan.

本文引用的文献

4
Complete genome sequences for 59 burkholderia isolates, both pathogenic and near neighbor.
Genome Announc. 2015 Apr 30;3(2):e00159-15. doi: 10.1128/genomeA.00159-15.
5
Efflux pump-mediated drug resistance in Burkholderia.
Front Microbiol. 2015 Apr 14;6:305. doi: 10.3389/fmicb.2015.00305. eCollection 2015.
6
Intravenous therapy duration and outcomes in melioidosis: a new treatment paradigm.
PLoS Negl Trop Dis. 2015 Mar 26;9(3):e0003586. doi: 10.1371/journal.pntd.0003586. eCollection 2015 Mar.
7
The complex evolution of antibiotic resistance in Mycobacterium tuberculosis.
Int J Infect Dis. 2015 Mar;32:94-100. doi: 10.1016/j.ijid.2015.01.014.
8
Trimethoprim/sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei from Thailand.
Int J Antimicrob Agents. 2015 May;45(5):557-9. doi: 10.1016/j.ijantimicag.2015.01.006. Epub 2015 Feb 16.
9
AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3511-6. doi: 10.1073/pnas.1419939112. Epub 2015 Mar 3.
10
Whole-Genome Sequences of 80 Environmental and Clinical Isolates of Burkholderia pseudomallei.
Genome Announc. 2015 Feb 12;3(1):e01282-14. doi: 10.1128/genomeA.01282-14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验