Leo Lanfranco, Weissmann Carina, Burns Matthew, Kang Minsu, Song Yuyu, Qiang Liang, Brady Scott T, Baas Peter W, Morfini Gerardo
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.
Hum Mol Genet. 2017 Jun 15;26(12):2321-2334. doi: 10.1093/hmg/ddx125.
Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects.
多种基因突变会导致遗传性痉挛性截瘫(HSP),这是一种涉及上运动神经元逆行性变性的神经疾病。其中,编码微管切断蛋白痉挛蛋白的SPAST基因突变是大多数HSP病例的病因。越来越多的遗传学和实验证据表明,包括快速轴突运输(FAT)在内的各种细胞内运输事件的改变可能与HSP的发病机制有关。然而,将SPAST突变与这些缺陷联系起来的机制在很大程度上仍然未知。本文利用分离的鱿鱼轴质进行的实验表明,FAT抑制是由具有不同HSP突变的痉挛蛋白引发的一种常见毒性作用,与微管结合或切断活性无关。突变型痉挛蛋白只有以组织特异性的M1亚型形式存在时才会产生这种毒性作用,而以普遍表达的较短的M87亚型形式存在时则不会。生化和药理学实验进一步表明,突变型M1痉挛蛋白对FAT的毒性作用涉及酪蛋白激酶2(CK2)的激活。在哺乳动物细胞中,突变型M1痉挛蛋白的表达会导致细胞内细胞器分布异常,而突变型M87痉挛蛋白则不会,药理学上抑制CK2可纠正这种异常。总的来说,这些结果证明了突变型M1痉挛蛋白对FAT具有亚型特异性的毒性作用,并确定CK2是这些作用的关键介质。