Suppr超能文献

突变型痉挛蛋白通过一种涉及酪蛋白激酶2激活的亚型特异性机制促进轴突运输缺陷。

Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation.

作者信息

Leo Lanfranco, Weissmann Carina, Burns Matthew, Kang Minsu, Song Yuyu, Qiang Liang, Brady Scott T, Baas Peter W, Morfini Gerardo

机构信息

Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.

Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Hum Mol Genet. 2017 Jun 15;26(12):2321-2334. doi: 10.1093/hmg/ddx125.

Abstract

Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects.

摘要

多种基因突变会导致遗传性痉挛性截瘫(HSP),这是一种涉及上运动神经元逆行性变性的神经疾病。其中,编码微管切断蛋白痉挛蛋白的SPAST基因突变是大多数HSP病例的病因。越来越多的遗传学和实验证据表明,包括快速轴突运输(FAT)在内的各种细胞内运输事件的改变可能与HSP的发病机制有关。然而,将SPAST突变与这些缺陷联系起来的机制在很大程度上仍然未知。本文利用分离的鱿鱼轴质进行的实验表明,FAT抑制是由具有不同HSP突变的痉挛蛋白引发的一种常见毒性作用,与微管结合或切断活性无关。突变型痉挛蛋白只有以组织特异性的M1亚型形式存在时才会产生这种毒性作用,而以普遍表达的较短的M87亚型形式存在时则不会。生化和药理学实验进一步表明,突变型M1痉挛蛋白对FAT的毒性作用涉及酪蛋白激酶2(CK2)的激活。在哺乳动物细胞中,突变型M1痉挛蛋白的表达会导致细胞内细胞器分布异常,而突变型M87痉挛蛋白则不会,药理学上抑制CK2可纠正这种异常。总的来说,这些结果证明了突变型M1痉挛蛋白对FAT具有亚型特异性的毒性作用,并确定CK2是这些作用的关键介质。

相似文献

2
Hereditary spastic paraplegia SPG4: what is known and not known about the disease.
Brain. 2015 Sep;138(Pt 9):2471-84. doi: 10.1093/brain/awv178. Epub 2015 Jun 20.
3
Pathogenic mutation of spastin has gain-of-function effects on microtubule dynamics.
J Neurosci. 2014 Jan 29;34(5):1856-67. doi: 10.1523/JNEUROSCI.3309-13.2014.
5
Functional differences of short and long isoforms of spastin harboring missense mutation.
Dis Model Mech. 2018 Sep 10;11(9):dmm033704. doi: 10.1242/dmm.033704.
7
Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients' neurons.
Hum Mol Genet. 2014 May 15;23(10):2527-41. doi: 10.1093/hmg/ddt644. Epub 2013 Dec 30.
8
A newly identified NES sequence present in spastin regulates its subcellular localization and microtubule severing activity.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118862. doi: 10.1016/j.bbamcr.2020.118862. Epub 2020 Sep 24.
9
Hereditary spastic paraplegia: gain-of-function mechanisms revealed by new transgenic mouse.
Hum Mol Genet. 2019 Apr 1;28(7):1136-1152. doi: 10.1093/hmg/ddy419.

引用本文的文献

1
UCHL1-Mediated Spastin Degradation Regulates Microtubule Severing and Hippocampal Neurite Outgrowth.
J Mol Neurosci. 2025 Apr 24;75(2):54. doi: 10.1007/s12031-025-02348-1.
2
Targeting MDM2 affects spastin protein levels and functions: implications for HSP treatment.
Cell Death Discov. 2025 Feb 7;11(1):53. doi: 10.1038/s41420-025-02333-y.
3
Unraveling Isoform Complexity: The Roles of M1- and M87-Spastin in Spastic Paraplegia 4 (SPG4).
Mov Disord. 2025 Mar;40(3):420-430. doi: 10.1002/mds.30072. Epub 2024 Nov 29.
4
Spastin accumulation and motor neuron defects caused by a novel SPAST splice site mutation.
J Transl Med. 2024 Sep 27;22(1):872. doi: 10.1186/s12967-024-05669-8.
5
Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis.
iScience. 2024 Aug 6;27(9):110683. doi: 10.1016/j.isci.2024.110683. eCollection 2024 Sep 20.
6
Hereditary spastic paraplegia: Novel insights into the pathogenesis and management.
SAGE Open Med. 2023 Dec 29;12:20503121231221941. doi: 10.1177/20503121231221941. eCollection 2024.
8
Editorial: Kinase/phosphatase signaling and axonal function in health and disease.
Front Cell Neurosci. 2023 Mar 24;17:1172836. doi: 10.3389/fncel.2023.1172836. eCollection 2023.
9
FBXL17/spastin axis as a novel therapeutic target of hereditary spastic paraplegia.
Cell Biosci. 2022 Jul 22;12(1):110. doi: 10.1186/s13578-022-00851-1.
10
The Role of Spastin in Axon Biology.
Front Cell Dev Biol. 2022 Jul 5;10:934522. doi: 10.3389/fcell.2022.934522. eCollection 2022.

本文引用的文献

1
Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination.
Neuron. 2016 Nov 23;92(4):845-856. doi: 10.1016/j.neuron.2016.09.049. Epub 2016 Oct 20.
4
Fast axonal transport in isolated axoplasm from the squid giant axon.
Methods Cell Biol. 2016;131:331-48. doi: 10.1016/bs.mcb.2015.07.004. Epub 2015 Sep 2.
5
Biochemical analysis of axon-specific phosphorylation events using isolated squid axoplasms.
Methods Cell Biol. 2016;131:199-216. doi: 10.1016/bs.mcb.2015.06.003. Epub 2015 Sep 2.
6
Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms.
Hum Mol Genet. 2016 Mar 15;25(6):1088-99. doi: 10.1093/hmg/ddv632. Epub 2016 Jan 6.
7
Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders.
Front Neurosci. 2015 Oct 26;9:397. doi: 10.3389/fnins.2015.00397. eCollection 2015.
8
Regulation of Axonal Transport by Protein Kinases.
Trends Biochem Sci. 2015 Oct;40(10):597-610. doi: 10.1016/j.tibs.2015.08.003.
9
Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules.
Cell Rep. 2015 Sep 22;12(11):1723-30. doi: 10.1016/j.celrep.2015.08.017. Epub 2015 Sep 3.
10
Hereditary spastic paraplegia SPG4: what is known and not known about the disease.
Brain. 2015 Sep;138(Pt 9):2471-84. doi: 10.1093/brain/awv178. Epub 2015 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验