Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France.
INSERM UMR-S 1193, Faculty of Pharmacy, Univirsité Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
Dis Model Mech. 2018 Sep 10;11(9):dmm033704. doi: 10.1242/dmm.033704.
Mutations of the () gene encoding for spastin protein are the main causes of hereditary spastic paraplegia. Spastin binds to microtubules and severs them through the enzymatic activity of its AAA domain. Several missense mutations located in this domain lead to stable, nonsevering spastins that decorate a subset of microtubules, suggesting a possible negative gain-of-function mechanism for these mutants. Of the two main isoforms of spastin, only mutations of the long isoform, M1, are supposed to be involved in the onset of the pathology, leaving the role of the ubiquitously expressed shorter one, M87, not fully investigated and understood. Here, we show that two isoforms of spastin harboring the same missense mutation bind and bundle different subsets of microtubules in HeLa cells, and likely stabilize them by increasing the level of acetylated tubulin. However, only mutated M1 has the ability to interact with wild-type M1, and decorates a subset of perinuclear microtubules associated with the endoplasmic reticulum that display higher resistance to microtubule depolymerization and increased intracellular ionic strength, compared with those decorated by mutated M87. We further show that only mutated M1 decorates microtubules of proximal axons and dendrites, and strongly impairs axonal transport in cortical neurons through a mechanism likely independent of the microtubule-severing activity of this protein.
编码 spastin 蛋白的 () 基因突变是遗传性痉挛性截瘫的主要原因。Spastin 与微管结合,并通过其 AAA 结构域的酶活性将其切断。位于该结构域中的几个错义突变导致稳定的、不切割的 spastin,这些 spastin 修饰微管的一个子集,表明这些突变体可能存在负性获得功能的机制。在 spastin 的两个主要同工型中,只有长同工型 M1 的突变被认为与发病机制有关,而普遍表达的短同工型 M87 的作用尚未得到充分研究和理解。在这里,我们表明,两种携带相同错义突变的 spastin 同工型在 HeLa 细胞中结合并捆绑不同的微管子集,并可能通过增加乙酰化微管的水平来稳定它们。然而,只有突变的 M1 具有与野生型 M1 相互作用的能力,并修饰与内质网相关的核周微管的一个子集,与突变的 M87 修饰的微管相比,这些微管显示出更高的抗微管解聚能力和增加的细胞内离子强度。我们进一步表明,只有突变的 M1 修饰近端轴突和树突的微管,并通过一种可能独立于该蛋白的微管切割活性的机制,严重损害皮质神经元中的轴突运输。