Suppr超能文献

用于构建功能性骨骼肌的生物物理刺激

Biophysical Stimulation for Engineering Functional Skeletal Muscle.

作者信息

Somers Sarah M, Spector Alexander A, DiGirolamo Douglas J, Grayson Warren L

机构信息

1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.

2 Translational Tissue Engineering Center, Johns Hopkins University School of Medicine , Baltimore, Maryland.

出版信息

Tissue Eng Part B Rev. 2017 Aug;23(4):362-372. doi: 10.1089/ten.TEB.2016.0444.

Abstract

Tissue engineering is a promising therapeutic strategy to regenerate skeletal muscle. However, ex vivo cultivation methods typically result in a low differentiation efficiency of stem cells as well as grafts that resemble the native tissues morphologically, but lack contractile function. The application of biomimetic tensile strain provides a potent stimulus for enhancing myogenic differentiation and engineering functional skeletal muscle grafts. We reviewed integrin-dependent mechanisms that potentially link mechanotransduction pathways to the upregulation of myogenic genes. Yet, gaps in our understanding make it challenging to use these pathways to theoretically determine optimal ex vivo strain regimens. A multitude of strain protocols have been applied to in vitro cultures for the cultivation of myogenic progenitors (adipose- and bone marrow-derived stem cells and satellite cells) and transformed murine myoblasts, C2C12s. Strain regimens are characterized by orientation, amplitude, and time-dependent factors (effective frequency, duration, and the rest period between successive strain cycles). Analysis of published data has identified possible minimum/maximum values for these parameters and suggests that uniaxial strains may be more potent than biaxial strains, possibly because they more closely mimic physiologic strain profiles. The application of these biophysical stimuli for engineering 3D skeletal muscle grafts is nontrivial and typically requires custom-designed bioreactors used in combination with biomaterial scaffolds. Consideration of the physical properties of these scaffolds is critical for effective transmission of the applied strains to encapsulated cells. Taken together, these studies demonstrate that biomimetic tensile strain generally results in improved myogenic outcomes in myogenic progenitors and differentiated myoblasts. However, for 3D systems, the optimization of the strain regimen may require the entire system including cells, biomaterials, and bioreactor, to be considered in tandem.

摘要

组织工程是一种很有前景的用于再生骨骼肌的治疗策略。然而,体外培养方法通常导致干细胞的分化效率较低,且培养出的移植物在形态上类似于天然组织,但缺乏收缩功能。仿生拉伸应变的应用为增强肌源性分化和构建功能性骨骼肌移植物提供了有力刺激。我们综述了整合素依赖性机制,这些机制可能将机械转导途径与肌源性基因的上调联系起来。然而,我们理解上的差距使得利用这些途径从理论上确定最佳的体外应变方案具有挑战性。多种应变方案已应用于体外培养,用于培养肌源性祖细胞(脂肪和骨髓来源的干细胞以及卫星细胞)和转化的小鼠成肌细胞C2C12。应变方案的特点是具有方向、幅度和时间依赖性因素(有效频率、持续时间以及连续应变循环之间的休息时间)。对已发表数据的分析确定了这些参数可能的最小值/最大值,并表明单轴应变可能比双轴应变更有效,这可能是因为它们更接近模拟生理应变模式。将这些生物物理刺激应用于构建三维骨骼肌移植物并非易事,通常需要定制设计的生物反应器与生物材料支架结合使用。考虑这些支架的物理特性对于将施加的应变有效传递给包封的细胞至关重要。综上所述,这些研究表明,仿生拉伸应变通常会使肌源性祖细胞和成肌细胞的肌源性结果得到改善。然而,对于三维系统,应变方案的优化可能需要同时考虑整个系统,包括细胞、生物材料和生物反应器。

相似文献

1

引用本文的文献

3
Engineering interfacial tissues: The myotendinous junction.工程化界面组织:肌腱-肌肉连接点
APL Bioeng. 2024 Jun 3;8(2):021505. doi: 10.1063/5.0189221. eCollection 2024 Jun.
4
Mechanome-Guided Strategies in Regenerative Rehabilitation.再生康复中的机械力引导策略
Curr Opin Biomed Eng. 2024 Mar;29. doi: 10.1016/j.cobme.2023.100516. Epub 2023 Nov 30.

本文引用的文献

1
Modeling Stem Cell Myogenic Differentiation.建模干细胞成肌分化。
Sci Rep. 2017 Jan 20;7:40639. doi: 10.1038/srep40639.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验