Suppr超能文献

Cega:一种用于在噪声系统中识别运动粒子的单粒子分割算法。

Cega: a single particle segmentation algorithm to identify moving particles in a noisy system.

机构信息

Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104.

Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104.

出版信息

Mol Biol Cell. 2021 Apr 19;32(9):931-941. doi: 10.1091/mbc.E20-11-0744. Epub 2021 Mar 31.

Abstract

Improvements to particle tracking algorithms are required to effectively analyze the motility of biological molecules in complex or noisy systems. A typical single particle tracking (SPT) algorithm detects particle coordinates for trajectory assembly. However, particle detection filters fail for data sets with low signal-to-noise levels. When tracking molecular motors in complex systems, standard techniques often fail to separate the fluorescent signatures of moving particles from background signal. We developed an approach to analyze the motility of kinesin motor proteins moving along the microtubule cytoskeleton of extracted neurons using the Kullback-Leibler divergence to identify regions where there are significant differences between models of moving particles and background signal. We tested our software on both simulated and experimental data and found a noticeable improvement in SPT capability and a higher identification rate of motors as compared with current methods. This algorithm, called Cega, for "find the object," produces data amenable to conventional blob detection techniques that can then be used to obtain coordinates for downstream SPT processing. We anticipate that this algorithm will be useful for those interested in tracking moving particles in complex in vitro or in vivo environments.

摘要

需要改进粒子追踪算法,以有效分析复杂或嘈杂系统中生物分子的运动性。典型的单个粒子跟踪(SPT)算法用于检测轨迹组装的粒子坐标。然而,对于低信噪比的数据集,粒子检测滤波器会失效。当跟踪复杂系统中的分子马达时,标准技术通常无法将运动粒子的荧光特征与背景信号区分开来。我们开发了一种方法,使用 Kullback-Leibler 散度来分析从提取神经元的微管细胞骨架上移动的驱动蛋白运动蛋白的运动性,以识别运动粒子和背景信号模型之间存在显著差异的区域。我们在模拟和实验数据上测试了我们的软件,发现与当前方法相比,SPT 能力有了明显提高,并且马达的识别率也更高。该算法称为“Cega”,意思是“找到对象”,生成适用于传统斑点检测技术的数据,然后可以使用这些数据获取用于下游 SPT 处理的坐标。我们预计,该算法将对那些有兴趣在复杂的体外或体内环境中跟踪运动粒子的人有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983e/8108521/b75adfff6e91/mbc-32-931-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验