Goto Tsuyoshi, Hirata Mariko, Aoki Yumeko, Iwase Mari, Takahashi Haruya, Kim Minji, Li Yongjia, Jheng Huei-Fen, Nomura Wataru, Takahashi Nobuyuki, Kim Chu-Sook, Yu Rina, Seno Shigeto, Matsuda Hideo, Aizawa-Abe Megumi, Ebihara Ken, Itoh Nobuyuki, Kawada Teruo
From the Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan,
Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501 Japan.
J Biol Chem. 2017 Jun 2;292(22):9175-9190. doi: 10.1074/jbc.M116.767590. Epub 2017 Apr 12.
Obesity causes excess fat accumulation in white adipose tissues (WAT) and also in other insulin-responsive organs such as the skeletal muscle, increasing the risk for insulin resistance, which can lead to obesity-related metabolic disorders. Peroxisome proliferator-activated receptor-α (PPARα) is a master regulator of fatty acid oxidation whose activator is known to improve hyperlipidemia. However, the molecular mechanisms underlying PPARα activator-mediated reduction in adiposity and improvement of metabolic disorders are largely unknown. In this study we investigated the effects of PPARα agonist (fenofibrate) on glucose metabolism dysfunction in obese mice. Fenofibrate treatment reduced adiposity and attenuated obesity-induced dysfunctions of glucose metabolism in obese mice fed a high-fat diet. However, fenofibrate treatment did not improve glucose metabolism in lipodystrophic A-Zip/F1 mice, suggesting that adipose tissue is important for the fenofibrate-mediated amelioration of glucose metabolism, although skeletal muscle actions could not be completely excluded. Moreover, we investigated the role of the hepatokine fibroblast growth factor 21 (FGF21), which regulates energy metabolism in adipose tissue. In WAT of WT mice, but not of FGF21-deficient mice, fenofibrate enhanced the expression of genes related to brown adipocyte functions, such as , , and Fenofibrate increased energy expenditure and attenuated obesity, whole body insulin resistance, and adipocyte dysfunctions in WAT in high-fat-diet-fed WT mice but not in FGF21-deficient mice. These findings indicate that FGF21 is crucial for the fenofibrate-mediated improvement of whole body glucose metabolism in obese mice via the amelioration of WAT dysfunctions.
肥胖会导致白色脂肪组织(WAT)以及其他胰岛素反应性器官(如骨骼肌)中脂肪过度积累,增加胰岛素抵抗风险,进而引发与肥胖相关的代谢紊乱。过氧化物酶体增殖物激活受体-α(PPARα)是脂肪酸氧化的主要调节因子,其激活剂已知可改善高脂血症。然而,PPARα激活剂介导的肥胖减轻和代谢紊乱改善的分子机制在很大程度上尚不清楚。在本研究中,我们调查了PPARα激动剂(非诺贝特)对肥胖小鼠葡萄糖代谢功能障碍的影响。非诺贝特治疗可减轻肥胖小鼠的肥胖程度,并减轻高脂饮食喂养的肥胖小鼠中由肥胖引起的葡萄糖代谢功能障碍。然而,非诺贝特治疗并未改善脂肪营养不良的A-Zip/F1小鼠的葡萄糖代谢,这表明脂肪组织对于非诺贝特介导的葡萄糖代谢改善很重要,尽管不能完全排除骨骼肌的作用。此外,我们研究了调节脂肪组织能量代谢的肝因子成纤维细胞生长因子21(FGF21)的作用。在野生型小鼠的白色脂肪组织中,而非FGF21缺陷型小鼠的白色脂肪组织中,非诺贝特增强了与棕色脂肪细胞功能相关的基因的表达,如 、 和 。非诺贝特增加了高脂饮食喂养的野生型小鼠的能量消耗,并减轻了肥胖、全身胰岛素抵抗和白色脂肪组织中的脂肪细胞功能障碍,但在FGF21缺陷型小鼠中则没有。这些发现表明,FGF21对于非诺贝特通过改善白色脂肪组织功能障碍介导的肥胖小鼠全身葡萄糖代谢改善至关重要。