Suppr超能文献

甲型流感病毒H15血凝素的独特结构特征

Unique Structural Features of Influenza Virus H15 Hemagglutinin.

作者信息

Tzarum Netanel, McBride Ryan, Nycholat Corwin M, Peng Wenjie, Paulson James C, Wilson Ian A

机构信息

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.

出版信息

J Virol. 2017 May 26;91(12). doi: 10.1128/JVI.00046-17. Print 2017 Jun 15.

Abstract

Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted. In the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can aid in global surveillance of such viruses for potential spread and emerging threat to the human population.

摘要

甲型H15流感病毒是第2组血凝素(HA)亚型的一个亚组(H7-H10-H15)的成员,该亚组包括2013年从人类中分离出的H7N9和H10N8病毒。然而,禽源H15病毒的分离相当罕见,直到最近,在地理上仅限于澳大利亚的野生滨鸟和水禽。H15病毒的HA在该亚组共有的受体结合位点的150环(从第150位开始的环)中有一个插入,与任何其他亚型相比,在260环中有一个独特的插入。在这里,我们通过聚糖阵列分析表明,H15 HA对禽源受体类似物有高度偏好。H15 HA晶体结构表明,它在结构上最接近H7N9 HA,但由于头部结构域的HA1亚基倾斜和打开,H15三聚体的头部结构域比所有其他HA更宽。H15 HA延伸的150环保留了与H7和H10 HA中相同的保守构象。此外,拉长的260环增加了HA的暴露表面,并可能导致H15 HA的抗原变异。由于禽源H15 HA病毒已被证明在哺乳动物模型中会导致病情加重,因此有必要对H15病毒进行进一步的特征描述和免疫监测。在过去20年中,据报道,包括2013年分离出的H7N9和H10N8病毒在内的新型甲型禽流感病毒亚型导致的人类感染病例明显增加。H15是甲型流感病毒第2组血凝素(HA)亚组的另一个成员,该亚组还包括H7和H10。H15病毒一直局限于澳大利亚,但最近在西西伯利亚分离出H15病毒表明,它们可能通过汇聚并发源于该地区的鸟类迁徙路线在全球范围内传播。在这里,我们报告了H15血凝素的三维结构和受体特异性的特征描述,揭示了不同的特征和特异性,这有助于对这类病毒进行全球监测,以防范其潜在传播和对人类群体的新威胁。

相似文献

1
Unique Structural Features of Influenza Virus H15 Hemagglutinin.
J Virol. 2017 May 26;91(12). doi: 10.1128/JVI.00046-17. Print 2017 Jun 15.
2
A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors.
Cell Host Microbe. 2015 Mar 11;17(3):377-384. doi: 10.1016/j.chom.2015.02.006.
3
Receptor binding by an H7N9 influenza virus from humans.
Nature. 2013 Jul 25;499(7459):496-9. doi: 10.1038/nature12372.
4
The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus.
Cell Rep. 2017 Apr 11;19(2):235-245. doi: 10.1016/j.celrep.2017.03.054.
7
Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses.
Science. 2013 Oct 11;342(6155):243-7. doi: 10.1126/science.1242917. Epub 2013 Sep 5.
8
Receptor binding by H10 influenza viruses.
Nature. 2014 Jul 24;511(7510):475-7. doi: 10.1038/nature13443.
9
Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.
Science. 2013 Dec 6;342(6163):1230-5. doi: 10.1126/science.1243761.

引用本文的文献

1
-Glycolylneuraminic Acid Binding of Avian and Equine H7 Influenza A Viruses.
J Virol. 2022 Mar 9;96(5):e0212021. doi: 10.1128/jvi.02120-21. Epub 2022 Jan 19.
2
Serologic Evidence of Occupational Exposure to Avian Influenza Viruses at the Wildfowl/Poultry/Human Interface.
Microorganisms. 2021 Oct 15;9(10):2153. doi: 10.3390/microorganisms9102153.
3
Recent Advances in the Chemical Biology of -Glycans.
Molecules. 2021 Feb 16;26(4):1040. doi: 10.3390/molecules26041040.
4
Adaptation of influenza viruses to human airway receptors.
J Biol Chem. 2021 Jan-Jun;296:100017. doi: 10.1074/jbc.REV120.013309. Epub 2020 Nov 22.
5
Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals.
Cell Host Microbe. 2020 Oct 7;28(4):602-613.e7. doi: 10.1016/j.chom.2020.08.011.
6
Molecular characterization and three-dimensional structures of avian H8, H11, H14, H15 and swine H4 influenza virus hemagglutinins.
Heliyon. 2020 Jun 6;6(6):e04068. doi: 10.1016/j.heliyon.2020.e04068. eCollection 2020 Jun.
7
Hemagglutinin Structure and Activities.
Cold Spring Harb Perspect Med. 2021 Oct 1;11(10):a038638. doi: 10.1101/cshperspect.a038638.
8
Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure-function relationships.
Mass Spectrom Rev. 2020 Jul;39(4):371-409. doi: 10.1002/mas.21629. Epub 2020 Apr 29.
10
Structural insights into the design of novel anti-influenza therapies.
Nat Struct Mol Biol. 2018 Feb;25(2):115-121. doi: 10.1038/s41594-018-0025-9. Epub 2018 Feb 2.

本文引用的文献

1
The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus.
Cell Rep. 2017 Apr 11;19(2):235-245. doi: 10.1016/j.celrep.2017.03.054.
2
Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity.
Cell Host Microbe. 2017 Jan 11;21(1):23-34. doi: 10.1016/j.chom.2016.11.004. Epub 2016 Dec 22.
3
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors.
Cell Host Microbe. 2015 Mar 11;17(3):377-384. doi: 10.1016/j.chom.2015.02.006.
7
Bat-derived influenza-like viruses H17N10 and H18N11.
Trends Microbiol. 2014 Apr;22(4):183-91. doi: 10.1016/j.tim.2014.01.010. Epub 2014 Feb 26.
8
Avian influenza A H10N8--a virus on the verge?
Lancet. 2014 Feb 22;383(9918):676-7. doi: 10.1016/S0140-6736(14)60163-X. Epub 2014 Feb 5.
9
Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study.
Lancet. 2014 Feb 22;383(9918):714-21. doi: 10.1016/S0140-6736(14)60111-2. Epub 2014 Feb 5.
10
Human infection with avian influenza A H6N1 virus: an epidemiological analysis.
Lancet Respir Med. 2013 Dec;1(10):771-8. doi: 10.1016/S2213-2600(13)70221-2. Epub 2013 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验