Suppr超能文献

孤立性肺结节癌症风险因素评估。

Assessment of the cancer risk factors of solitary pulmonary nodules.

作者信息

Yang Li, Zhang Qiao, Bai Li, Li Ting-Yuan, He Chuang, Ma Qian-Li, Li Liang-Shan, Huang Xue-Quan, Qian Gui-Sheng

机构信息

Interventional Radiology Department, the First Hospital of the Third Military Medical University, Chongqing 400038, China.

Institute of Respiratory Diseases, the Second Hospital of the Third Military Medical University, Chongqing 400038, China.

出版信息

Oncotarget. 2017 Apr 25;8(17):29318-29327. doi: 10.18632/oncotarget.16426.

Abstract

There are no large samples or exact prediction models for assessing the cancer risk factors of solitary pulmonary nodules (SPNs) in the Chinese population. We retrospectively analyzed the clinical and imaging data of patients with SPNs who underwent computer tomography guided needle biopsy in our hospital from Jan 1st of 2011 to March 30th of 2016. These patients were divided into a development data set and a validation data set. These groups included 1078 and 344 patients, respectively. A prediction model was developed from the development data set and was validated with the validation data set using logistic regression. The predictors of cancer in our model included female gender, age, pack-years of smoking, a previous history of malignancy, nodule size, lobulated and spiculated edges, lobulation alone and spiculation alone. The Area Under the Curves, sensitivity and specificity of our model in the development and validation data sets were significantly higher than those of the Mayo model and VA model (p < 0.001). We established the largest sampling risk prediction model of SPNs in a Chinese cohort. This model is particularly applicable to SPNs > 8 mm in size. SPNs in female patients, as well as SPNs featuring a combination of lobulated and spiculated edges or lobulated edges alone, should be evaluated carefully due to the probability that they are malignant.

摘要

在中国人群中,尚无用于评估孤立性肺结节(SPN)癌症风险因素的大样本或精确预测模型。我们回顾性分析了2011年1月1日至2016年3月30日在我院接受计算机断层扫描引导下经皮肺穿刺活检的SPN患者的临床和影像数据。这些患者被分为一个开发数据集和一个验证数据集。这两组分别包括1078例和344例患者。从开发数据集中开发了一个预测模型,并使用逻辑回归在验证数据集中进行验证。我们模型中癌症的预测因素包括女性性别、年龄、吸烟包年数、既往恶性肿瘤病史、结节大小、分叶和毛刺状边缘、单纯分叶和单纯毛刺状边缘。我们模型在开发和验证数据集中的曲线下面积、敏感性和特异性显著高于Mayo模型和VA模型(p<0.001)。我们在中国队列中建立了最大样本量的SPN风险预测模型。该模型特别适用于直径>8mm的SPN。女性患者的SPN,以及具有分叶和毛刺状边缘组合或仅具有分叶边缘的SPN,因其具有恶性的可能性,应仔细评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b0/5438732/5732d695c4b9/oncotarget-08-29318-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验