Suppr超能文献

A549和MRC - 5细胞在微流控系统中的聚集

A549 and MRC-5 cell aggregation in a microfluidic system.

作者信息

Zuchowska A, Jastrzebska E, Zukowski K, Chudy M, Dybko A, Brzozka Z

机构信息

Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology , Warsaw, Mazowieckie 00-664, Poland.

出版信息

Biomicrofluidics. 2017 Mar 28;11(2):024110. doi: 10.1063/1.4979104. eCollection 2017 Mar.

Abstract

In this paper, we present a culture of A549 and MRC-5 spheroids in a microfluidic system. The aim of our work was to develop a good lung cancer model for the evaluation of drug cytotoxicity. Our research was focused on determining the progress of cell aggregation depending on such factors as the depth of culture microwells in the microdevices, a different flow rate of the introduced cell suspensions, and the addition of collagen to cell suspensions. We showed that these factors had a significant influence on spheroid formation. It was found that both MRC-5 and A549 cells exhibited higher aggregation in 500 m microwells. We also noticed that collagen needs to be added to A549 cells to form the spheroids. Optimizing the mentioned parameters allowed us to form 3D lung tissue models in the microfluidic system during the 10-day culture. This study indicates how important an appropriate selection of the specified parameters is (e.g., geometry of the microwells in the microsystem) to obtain the spheroids characterized by high viability in the microfluidic system.

摘要

在本文中,我们展示了在微流控系统中培养A549和MRC-5球体的方法。我们工作的目的是开发一种用于评估药物细胞毒性的良好肺癌模型。我们的研究重点是根据诸如微器件中培养微孔的深度、引入的细胞悬液的不同流速以及向细胞悬液中添加胶原蛋白等因素来确定细胞聚集的进程。我们表明这些因素对球体形成有显著影响。发现MRC-5和A549细胞在500μm微孔中均表现出更高的聚集性。我们还注意到需要向A549细胞中添加胶原蛋白以形成球体。优化上述参数使我们能够在10天培养期间在微流控系统中形成三维肺组织模型。这项研究表明,为了在微流控系统中获得具有高活力特征的球体,适当选择特定参数(例如微系统中微孔的几何形状)是多么重要。

相似文献

1
A549 and MRC-5 cell aggregation in a microfluidic system.
Biomicrofluidics. 2017 Mar 28;11(2):024110. doi: 10.1063/1.4979104. eCollection 2017 Mar.
2
3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system.
Anal Chim Acta. 2017 Oct 16;990:110-120. doi: 10.1016/j.aca.2017.07.009. Epub 2017 Jul 14.
4
Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip.
Biosens Bioelectron. 2013 Feb 15;40(1):68-74. doi: 10.1016/j.bios.2012.06.017. Epub 2012 Jun 19.
5
Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system.
Electrophoresis. 2017 Apr;38(8):1206-1216. doi: 10.1002/elps.201600417. Epub 2017 Feb 14.
6
Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells.
Biosens Bioelectron. 2019 Feb 1;126:214-221. doi: 10.1016/j.bios.2018.10.069. Epub 2018 Nov 2.
7
In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device.
Biotechnol Bioeng. 2019 Nov;116(11):3041-3052. doi: 10.1002/bit.27114. Epub 2019 Jul 26.
9
Rapid spheroid clearing on a microfluidic chip.
Lab Chip. 2017 Dec 19;18(1):153-161. doi: 10.1039/c7lc01114h.
10
A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
Lab Chip. 2011 Jan 7;11(1):115-9. doi: 10.1039/c0lc00134a. Epub 2010 Nov 1.

引用本文的文献

1
A Novel Ex Vivo Tumor Spheroid-Tissue Model for Investigating Microvascular Remodeling and Lymphatic Blood Vessel Plasticity.
Ann Biomed Eng. 2024 Sep;52(9):2457-2472. doi: 10.1007/s10439-024-03535-8. Epub 2024 May 25.
3
Spheroid Engineering in Microfluidic Devices.
ACS Omega. 2023 Jan 18;8(4):3630-3649. doi: 10.1021/acsomega.2c06052. eCollection 2023 Jan 31.
4
Construction of in vitro 3-D model for lung cancer-cell metastasis study.
BMC Cancer. 2022 Apr 21;22(1):438. doi: 10.1186/s12885-022-09546-9.
5
Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study.
Front Bioeng Biotechnol. 2021 Nov 23;9:781566. doi: 10.3389/fbioe.2021.781566. eCollection 2021.
6
Lung carcinoma spheroids embedded in a microfluidic platform.
Cytotechnology. 2021 Jun;73(3):457-471. doi: 10.1007/s10616-021-00470-7. Epub 2021 Apr 22.
7
Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation.
Mater Sci Eng C Mater Biol Appl. 2021 Jun;125:112100. doi: 10.1016/j.msec.2021.112100. Epub 2021 Apr 14.
9
Probing tumor microtissue formation and epithelial-mesenchymal transition on a well-mesh microchip.
Biomicrofluidics. 2019 Jan 4;13(1):014102. doi: 10.1063/1.5064838. eCollection 2019 Jan.
10
A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip.
Biomicrofluidics. 2018 Apr 12;12(2):024117. doi: 10.1063/1.5021002. eCollection 2018 Mar.

本文引用的文献

3
Cell-Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation.
Cancer Res. 2015 Jun 15;75(12):2426-33. doi: 10.1158/0008-5472.CAN-14-3534. Epub 2015 Apr 8.
4
Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors.
Assay Drug Dev Technol. 2014 May;12(4):207-18. doi: 10.1089/adt.2014.573.
5
A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening.
Lab Chip. 2014 Jun 21;14(12):2096-104. doi: 10.1039/c4lc00291a. Epub 2014 May 7.
8
Multi-function microsystem for cells migration analysis and evaluation of photodynamic therapy procedure in coculture.
Biomicrofluidics. 2012 Dec 12;6(4):44116. doi: 10.1063/1.4771966. eCollection 2012.
9
Development of in vitro 3D TissueFlex® islet model for diabetic drug efficacy testing.
PLoS One. 2013 Aug 15;8(8):e72612. doi: 10.1371/journal.pone.0072612. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验