Roehri Nicolas, Pizzo Francesca, Bartolomei Fabrice, Wendling Fabrice, Bénar Christian-George
Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
APHM, Timone hospital, Clinical Neurophysiology, Marseille, France.
PLoS One. 2017 Apr 13;12(4):e0174702. doi: 10.1371/journal.pone.0174702. eCollection 2017.
High-frequency oscillations (HFO) have been suggested as biomarkers of epileptic tissues. While visual marking of these short and small oscillations is tedious and time-consuming, automatic HFO detectors have not yet met a large consensus. Even though detectors have been shown to perform well when validated against visual marking, the large number of false detections due to their lack of robustness hinder their clinical application. In this study, we developed a validation framework based on realistic and controlled simulations to quantify precisely the assets and weaknesses of current detectors. We constructed a dictionary of synthesized elements-HFOs and epileptic spikes-from different patients and brain areas by extracting these elements from the original data using discrete wavelet transform coefficients. These elements were then added to their corresponding simulated background activity (preserving patient- and region- specific spectra). We tested five existing detectors against this benchmark. Compared to other studies confronting detectors, we did not only ranked them according their performance but we investigated the reasons leading to these results. Our simulations, thanks to their realism and their variability, enabled us to highlight unreported issues of current detectors: (1) the lack of robust estimation of the background activity, (2) the underestimated impact of the 1/f spectrum, and (3) the inadequate criteria defining an HFO. We believe that our benchmark framework could be a valuable tool to translate HFOs into a clinical environment.
高频振荡(HFO)已被认为是癫痫组织的生物标志物。虽然对这些短暂且微小的振荡进行视觉标记既繁琐又耗时,但自动HFO检测器尚未达成广泛共识。尽管检测器在与视觉标记进行验证时已显示出良好的性能,但由于其缺乏稳健性而导致的大量误检测阻碍了它们的临床应用。在本研究中,我们基于现实且可控的模拟开发了一个验证框架,以精确量化当前检测器的优点和缺点。我们通过使用离散小波变换系数从原始数据中提取这些元素,构建了一个由来自不同患者和脑区的合成元素——HFO和癫痫棘波组成的字典。然后将这些元素添加到其相应的模拟背景活动中(保留患者和区域特定的频谱)。我们针对这个基准测试了五种现有的检测器。与其他对比检测器的研究相比,我们不仅根据它们的性能对其进行排名,还调查了导致这些结果的原因。我们的模拟由于其真实性和可变性,使我们能够突出当前检测器未报告的问题:(1)背景活动缺乏稳健估计,(2)1/f频谱的影响被低估,以及(3)定义HFO的标准不充分。我们相信我们的基准框架可能是将HFO转化为临床环境的一个有价值的工具。