Suppr超能文献

用于结构组织再生的分层微/纳米纤维生物支架。

Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration.

机构信息

Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China.

Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, 215007, P. R. China.

出版信息

Adv Healthc Mater. 2017 Jul;6(13). doi: 10.1002/adhm.201601457. Epub 2017 Apr 13.

Abstract

Various biomimetic scaffolds with hierarchical micro/nanostructures are designed to closely mimic native extracellular matrix network and to guide cell behavior to promote structural tissue generation. However, it remains a challenge to fabricate hierarchical micro/nanoscaled fibrous scaffolds with different functional components that endow the scaffolds with both biochemical and physical features to exert different biological roles during the process of tissue healing. In this study, a biomimetic designed micro/nanoscaled scaffold with integrated hierarchical dual fibrillar components is fabricated in order to repair dura mater and prevent the formation of epidural scars via collagen molecule self-assembly, electrospinning, and biological interface crosslinking strategies. The fabricated biomimetic scaffolds display micro/nanofibers staggered hierarchical architecture with good mechanical properties and biocompatibility, and it has a more profound effect on attachment, proliferation, and differentiation of fibroblasts. Using a rabbit duraplasty model in vivo, the authors find that dural defects repaired with hierarchical micro/nanoscaled scaffold form a continuous neodura tissue similar to native dura mater; furthermore, the number of scar tissues decreases significantly in the laminectomy sites compared with conventional electrospun microfibrous scaffold. Taken together, these data suggest that the hierarchical micro/nanoscaled fibrous scaffolds with dual fibrillar components may act as a "true" dural substitutes for dual repair.

摘要

各种具有分级微/纳米结构的仿生支架被设计用来模拟天然细胞外基质网络,并引导细胞行为,以促进组织结构的生成。然而,制造具有不同功能成分的分级微/纳米纤维支架仍然具有挑战性,这些功能成分赋予支架生化和物理特性,在组织愈合过程中发挥不同的生物学作用。在这项研究中,通过胶原分子自组装、静电纺丝和生物界面交联策略,设计并制造了一种具有集成分级双纤维组件的仿生微/纳米分级支架,用于修复硬脑膜并防止硬膜外瘢痕形成。所制备的仿生支架具有微/纳米纤维交错的分级结构,具有良好的机械性能和生物相容性,对成纤维细胞的附着、增殖和分化有更深远的影响。通过体内兔硬脑膜修补模型,作者发现使用分级微/纳米支架修复硬脑膜缺陷后,形成的组织类似于天然硬脑膜的连续新硬脑膜;此外,与传统的静电纺微纤维支架相比,在椎板切除术部位的瘢痕组织数量显著减少。综上所述,这些数据表明,具有双纤维组件的分级微/纳米纤维支架可以作为真正的硬脑膜替代品,实现双重修复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验