Suppr超能文献

转化生长因子-β信号传导的数学模型:反馈耦合与信号转换一致。

Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching.

作者信息

Khatibi Shabnam, Zhu Hong-Jian, Wagner John, Tan Chin Wee, Manton Jonathan H, Burgess Antony W

机构信息

Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, Victoria, 3010, Australia.

The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia.

出版信息

BMC Syst Biol. 2017 Apr 13;11(1):48. doi: 10.1186/s12918-017-0421-5.

Abstract

BACKGROUND

Transforming growth factor β (TGF-β) signalling regulates the development of embryos and tissue homeostasis in adults. In conjunction with other oncogenic changes, long-term perturbation of TGF-β signalling is associated with cancer metastasis. Although TGF-β signalling can be complex, many of the signalling components are well defined, so it is possible to develop mathematical models of TGF-β signalling using reduction and scaling methods. The parameterization of our TGF-β signalling model is consistent with experimental data.

RESULTS

We developed our mathematical model for the TGF-β signalling pathway, i.e. the RF- model of TGF-β signalling, using the "rapid equilibrium assumption" to reduce the network of TGF-β signalling reactions based on the time scales of the individual reactions. By adding time-delayed positive feedback to the inherent time-delayed negative feedback for TGF-β signalling. We were able to simulate the sigmoidal, switch-like behaviour observed for the concentration dependence of long-term (> 3 hours) TGF-β stimulation. Computer simulations revealed the vital role of the coupling of the positive and negative feedback loops on the regulation of the TGF-β signalling system. The incorporation of time-delays for the negative feedback loop improved the accuracy, stability and robustness of the model. This model reproduces both the short-term and long-term switching responses for the intracellular signalling pathways at different TGF-β concentrations. We have tested the model against experimental data from MEF (mouse embryonic fibroblasts) WT, SV40-immortalized MEFs and Gp130 MEFs. The predictions from the RF- model are consistent with the experimental data.

CONCLUSIONS

Signalling feedback loops are required to model TGF-β signal transduction and its effects on normal and cancer cells. We focus on the effects of time-delayed feedback loops and their coupling to ligand stimulation in this system. The model was simplified and reduced to its key components using standard methods and the rapid equilibrium assumption. We detected differences in short-term and long-term signal switching. The results from the RF- model compare well with experimental data and predict the dynamics of TGF-β signalling in cancer cells with different mutations.

摘要

背景

转化生长因子β(TGF-β)信号传导调节胚胎发育和成年期组织稳态。与其他致癌变化一起,TGF-β信号传导的长期扰动与癌症转移相关。尽管TGF-β信号传导可能很复杂,但许多信号成分已得到很好的定义,因此使用简化和缩放方法开发TGF-β信号传导的数学模型是可能的。我们的TGF-β信号传导模型的参数化与实验数据一致。

结果

我们使用“快速平衡假设”基于各个反应的时间尺度简化TGF-β信号反应网络,从而开发了TGF-β信号通路的数学模型,即TGF-β信号传导的RF-模型。通过向TGF-β信号传导固有的时间延迟负反馈中添加时间延迟正反馈,我们能够模拟长期(>3小时)TGF-β刺激的浓度依赖性所观察到的S形、开关样行为。计算机模拟揭示了正反馈和负反馈回路耦合对TGF-β信号系统调节的重要作用。负反馈回路中时间延迟的纳入提高了模型的准确性、稳定性和鲁棒性。该模型再现了不同TGF-β浓度下细胞内信号通路的短期和长期切换反应。我们已根据来自MEF(小鼠胚胎成纤维细胞)野生型、SV40永生化MEF和Gp130 MEF的实验数据对该模型进行了测试。RF-模型的预测与实验数据一致。

结论

信号反馈回路是模拟TGF-β信号转导及其对正常细胞和癌细胞影响所必需的。我们在本系统中关注时间延迟反馈回路的影响及其与配体刺激的耦合。该模型使用标准方法和快速平衡假设进行了简化并简化为其关键组件。我们检测到了短期和长期信号切换的差异。RF-模型的结果与实验数据比较良好,并预测了具有不同突变的癌细胞中TGF-β信号传导的动态变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fe3/5390422/89fe9187fc57/12918_2017_421_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验