Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73476, Iran.
Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btad079.
The recent availability of omics data allows the construction of holistic maps of interactions between numerous role-playing biomolecules. However, these networks are often static, ignoring the dynamic behavior of biological processes. On the other hand, dynamic models are commonly constructed on small scales. Hence, the construction of large-scale dynamic models that can quantitatively predict the time-course cellular behaviors remains a big challenge.
In this study, a pipeline is proposed for the automatic construction of large-scale dynamic models. The pipeline uses a list of biomolecules and their time-course trajectories in a given phenomenon as input. First, the interaction network of the biomolecules is constructed. To state the underlying molecular events of each interaction, it is translated into a map of biochemical reactions. Next, to define the kinetics of the reactions, an ordinary differential equation (ODE) is generated for each involved biomolecule. Finally, the parameters of the ODE system are estimated by a novel large-scale parameter approximation method. The high performance of the pipeline is demonstrated by modeling the response of a colorectal cancer cell line to different chemotherapy regimens. In conclusion, Systematic Protein Association Dynamic ANalyzer constructs genome-scale dynamic models, filling the gap between large-scale static and small-scale dynamic modeling strategies. This simulation approach allows for holistic quantitative predictions which are critical for the simulation of therapeutic interventions in precision medicine.
Detailed information about the constructed large-scale model of colorectal cancer is available in supplementary data. The SPADAN toolbox source code is also available on GitHub (https://github.com/PooyaBorzou/SPADAN).
Supplementary data are available at Bioinformatics online.
最近获得的组学数据允许构建众多角色的生物分子之间相互作用的整体图谱。然而,这些网络通常是静态的,忽略了生物过程的动态行为。另一方面,动态模型通常在小范围内构建。因此,构建能够定量预测细胞行为时间过程的大规模动态模型仍然是一个巨大的挑战。
在这项研究中,提出了一种用于自动构建大规模动态模型的流水线。该流水线使用给定现象中生物分子及其时间过程轨迹的列表作为输入。首先,构建生物分子的相互作用网络。为了说明每个相互作用的潜在分子事件,将其转换为生化反应图。接下来,为了定义反应的动力学,为每个涉及的生物分子生成一个常微分方程 (ODE)。最后,通过一种新颖的大规模参数逼近方法估计 ODE 系统的参数。通过对结直肠癌细胞系对不同化疗方案的反应进行建模,证明了该流水线的高性能。总之,系统蛋白关联动态分析器构建了基因组规模的动态模型,填补了大规模静态和小规模动态建模策略之间的空白。这种模拟方法允许进行整体定量预测,这对于精确医学中的治疗干预模拟至关重要。
结直肠癌构建的大规模模型的详细信息可在补充数据中获得。SPADAN 工具包的源代码也可在 GitHub(https://github.com/PooyaBorzou/SPADAN)上获得。
补充数据可在生物信息学在线获得。