Department of Psychology and Neuroscience, Baylor University, One Bear Place #97334, Waco, TX, 76798, USA.
Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway Ave, Baltimore, MD, 21205, USA.
Prev Sci. 2018 Jan;19(1):58-67. doi: 10.1007/s11121-017-0785-1.
Human genetic research in the past decade has generated a wealth of data from the genome-wide association scan era, much of which is catalogued and freely available. These data will typically test the relationship between a single nucleotide variant or polymorphism (SNP) and some outcome, disease, or trait. Ongoing investigations will yield a similar wealth of data regarding epigenetic phenomena. These data will typically test the relationship between DNA methylation at a single genomic location/region and some outcome. Most of these findings will be the result of cross-sectional investigations typically using ascertained cases and controls. Consequently, most methodological consideration focuses on methods appropriate for simple case-control comparisons. It is expected that a growing number of investigators with longitudinal experimental prevention or intervention cohorts will also measure genetic and epigenetic indicators as part of their investigations, harvesting the wealth of information generated by the genome-wide association study (GWAS) era to allow for targeted hypothesis testing in the next generation of prevention and intervention trials. Herein, we discuss appropriate quality control and statistical modelling of genetic, polygenic, and epigenetic measures in longitudinal models. We specifically discuss quality control, population stratification, genotype imputation, pathway approaches, and proper modelling of an interaction between a specific genetic variant and an environment variable (GxE interaction).
在过去十年中,人类遗传研究产生了大量来自全基因组关联扫描时代的数据,其中大部分都已编目并免费提供。这些数据通常会测试单个核苷酸变异或多态性 (SNP) 与某些结果、疾病或特征之间的关系。正在进行的研究将产生关于表观遗传现象的类似丰富的数据。这些数据通常会测试单个基因组位置/区域的 DNA 甲基化与某些结果之间的关系。这些发现中的大多数将是横断面研究的结果,这些研究通常使用已确定的病例和对照。因此,大多数方法学考虑都集中在适用于简单病例对照比较的方法上。预计越来越多的具有纵向实验预防或干预队列的研究人员也将测量遗传和表观遗传指标作为其研究的一部分,利用全基因组关联研究 (GWAS) 时代产生的大量信息,以便在下一代预防和干预试验中进行有针对性的假设检验。在这里,我们讨论了纵向模型中遗传、多基因和表观遗传措施的适当质量控制和统计建模。我们特别讨论了质量控制、群体分层、基因型推断、途径方法以及特定遗传变异与环境变量之间相互作用的适当建模 (GxE 相互作用)。