Suppr超能文献

纳入遗传和表观遗传信息预防和干预试验的关键问题。

Critical Issues in the Inclusion of Genetic and Epigenetic Information in Prevention and Intervention Trials.

机构信息

Department of Psychology and Neuroscience, Baylor University, One Bear Place #97334, Waco, TX, 76798, USA.

Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway Ave, Baltimore, MD, 21205, USA.

出版信息

Prev Sci. 2018 Jan;19(1):58-67. doi: 10.1007/s11121-017-0785-1.

Abstract

Human genetic research in the past decade has generated a wealth of data from the genome-wide association scan era, much of which is catalogued and freely available. These data will typically test the relationship between a single nucleotide variant or polymorphism (SNP) and some outcome, disease, or trait. Ongoing investigations will yield a similar wealth of data regarding epigenetic phenomena. These data will typically test the relationship between DNA methylation at a single genomic location/region and some outcome. Most of these findings will be the result of cross-sectional investigations typically using ascertained cases and controls. Consequently, most methodological consideration focuses on methods appropriate for simple case-control comparisons. It is expected that a growing number of investigators with longitudinal experimental prevention or intervention cohorts will also measure genetic and epigenetic indicators as part of their investigations, harvesting the wealth of information generated by the genome-wide association study (GWAS) era to allow for targeted hypothesis testing in the next generation of prevention and intervention trials. Herein, we discuss appropriate quality control and statistical modelling of genetic, polygenic, and epigenetic measures in longitudinal models. We specifically discuss quality control, population stratification, genotype imputation, pathway approaches, and proper modelling of an interaction between a specific genetic variant and an environment variable (GxE interaction).

摘要

在过去十年中,人类遗传研究产生了大量来自全基因组关联扫描时代的数据,其中大部分都已编目并免费提供。这些数据通常会测试单个核苷酸变异或多态性 (SNP) 与某些结果、疾病或特征之间的关系。正在进行的研究将产生关于表观遗传现象的类似丰富的数据。这些数据通常会测试单个基因组位置/区域的 DNA 甲基化与某些结果之间的关系。这些发现中的大多数将是横断面研究的结果,这些研究通常使用已确定的病例和对照。因此,大多数方法学考虑都集中在适用于简单病例对照比较的方法上。预计越来越多的具有纵向实验预防或干预队列的研究人员也将测量遗传和表观遗传指标作为其研究的一部分,利用全基因组关联研究 (GWAS) 时代产生的大量信息,以便在下一代预防和干预试验中进行有针对性的假设检验。在这里,我们讨论了纵向模型中遗传、多基因和表观遗传措施的适当质量控制和统计建模。我们特别讨论了质量控制、群体分层、基因型推断、途径方法以及特定遗传变异与环境变量之间相互作用的适当建模 (GxE 相互作用)。

相似文献

6
Epigenomics in stress tolerance of plants under the climate change.植物在气候变化下的应激耐受中的表观基因组学。
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
7
Epigenetics in sports.运动中的表观遗传学。
Sports Med. 2013 Feb;43(2):93-110. doi: 10.1007/s40279-012-0012-y.
9
Genome-wide methylation data mirror ancestry information.全基因组甲基化数据反映祖先信息。
Epigenetics Chromatin. 2017 Jan 3;10:1. doi: 10.1186/s13072-016-0108-y. eCollection 2017.

引用本文的文献

4
The Impact of Genes on Adolescent Substance Use: A Developmental Perspective.基因对青少年物质使用的影响:发展视角
Curr Addict Rep. 2019 Dec;6(4):522-531. doi: 10.1007/s40429-019-00273-z. Epub 2019 Sep 3.

本文引用的文献

7
Evaluating historical candidate genes for schizophrenia.评估精神分裂症的历史候选基因。
Mol Psychiatry. 2015 May;20(5):555-62. doi: 10.1038/mp.2015.16. Epub 2015 Mar 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验