Gallaud Emmanuel, Pham Tri, Cabernard Clemens
Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland.
Department of Biology, University of Washington, Seattle, WA, 98195, USA.
Results Probl Cell Differ. 2017;61:183-210. doi: 10.1007/978-3-319-53150-2_8.
Asymmetric cell division (ACD) is a fundamental mechanism to generate cell diversity, giving rise to daughter cells with different developmental potentials. ACD is manifested in the asymmetric segregation of proteins or mRNAs, when the two daughter cells differ in size or are endowed with different potentials to differentiate into a particular cell type (Horvitz and Herskowitz, Cell 68:237-255, 1992). Drosophila neuroblasts, the neural stem cells of the developing fly brain, are an ideal system to study ACD since this system encompasses all of these characteristics. Neuroblasts are intrinsically polarized cells, utilizing polarity cues to orient the mitotic spindle, segregate cell fate determinants asymmetrically, and regulate spindle geometry and physical asymmetry. The neuroblast system has contributed significantly to the elucidation of the basic molecular mechanisms underlying ACD. Recent findings also highlight its usefulness to study basic aspects of stem cell biology and tumor formation. In this review, we will focus on what has been learned about the basic mechanisms underlying ACD in fly neuroblasts.
不对称细胞分裂(ACD)是产生细胞多样性的一种基本机制,可产生具有不同发育潜能的子细胞。当两个子细胞大小不同或具有分化为特定细胞类型的不同潜能时,ACD表现为蛋白质或mRNA的不对称分离(霍维茨和赫斯科维茨,《细胞》68:237 - 255,1992年)。果蝇神经母细胞是发育中的果蝇大脑的神经干细胞,是研究ACD的理想系统,因为该系统具备所有这些特征。神经母细胞是内在极化的细胞,利用极性线索来定向有丝分裂纺锤体、不对称分离细胞命运决定因子,并调节纺锤体几何形状和物理不对称性。神经母细胞系统对阐明ACD背后的基本分子机制做出了重大贡献。最近的研究结果也凸显了其在研究干细胞生物学和肿瘤形成基本方面的有用性。在这篇综述中,我们将聚焦于在果蝇神经母细胞中关于ACD基本机制所了解到的内容。