Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454, Marne-la-Vallée, France.
University of Cassino and Southern Lazio, Department of Civil and Mechanical Engineering, Via Di Biasio, 43, 03043, Cassino, FR, Italy.
Water Res. 2017 Jul 1;118:1-11. doi: 10.1016/j.watres.2017.04.013. Epub 2017 Apr 6.
Formation of micelles at high surfactant concentration strongly modifies organic pollutant oxidation mechanisms and kinetics during anodic oxidation (AO) using boron doped diamond (BDD) anode. Results presented and discussed in this study emphasized the following mechanisms: (i) micelles act as a protective environment and reduce the availability of target molecules towards BDD(OH); (ii) the use of low current density strongly reduces micelle degradation kinetics due to both steric hindrance phenomenon for oxidation of micelles at the BDD surface and decrease of mediated oxidation in the bulk; (iii) compounds solubilized in surfactant-containing solutions can be either oxidized after degradation of the protective environment formed by micelles or if they are present as free extra-micellar compounds. Therefore, selective degradation of organic compounds entrapped in micelles can be achieved by using low current density and high surfactant concentration. In fact, these operating conditions strongly hinder micelle oxidation, while free (extra-micellar) compounds can still be oxidized. Then, the remaining entrapped compounds can also be continuously released in the aqueous phase, according to the micellar/aqueous phase partitioning coefficient (K). These results have been applied for the treatment of a real polycyclic aromatic hydrocarbon-containing soil washing (SW) solution. After 23 h of treatment at 2.1 mA cm, 83% of phenanthrene, 90% of anthracene, 77% of pyrene and 75% of fluoranthene were degraded and the treated SW solution was reused for an additional SW step with only 5% lower extraction capacity than a fresh TW80 solution. A comparative study highlighted the superiority of this treatment strategy, compared to the use of activated carbon for selective adsorption of polycyclic aromatic hydrocarbons and SW solution reuse.
在使用掺硼金刚石(BDD)阳极进行阳极氧化(AO)时,表面活性剂浓度高会形成胶束,强烈改变有机污染物的氧化机制和动力学。本文介绍和讨论的结果强调了以下机制:(i)胶束充当保护环境,降低目标分子对 BDD(OH)的可及性;(ii)低电流密度强烈降低胶束降解动力学,这是由于在 BDD 表面氧化胶束时的空间位阻现象和体相中介化氧化的减少;(iii)在含有表面活性剂的溶液中溶解的化合物可以在胶束形成的保护环境降解后被氧化,或者如果它们作为游离的胶束外化合物存在。因此,通过使用低电流密度和高表面活性剂浓度,可以实现对胶束中有机化合物的选择性降解。实际上,这些操作条件强烈阻碍了胶束的氧化,而游离的(胶束外)化合物仍可被氧化。然后,根据胶束/水相间分配系数(K),仍被包裹的化合物也可以连续释放到水相中。这些结果已应用于处理真实的多环芳烃(PAHs)含土壤洗涤(SW)溶液。在 2.1 mA·cm 的电流密度下处理 23 小时后,菲、蒽、芘和荧蒽的降解率分别达到 83%、90%、77%和 75%,处理后的 SW 溶液可再用于额外的 SW 步骤,其萃取能力仅比新鲜的 TW80 溶液低 5%。与使用活性炭选择性吸附多环芳烃和 SW 溶液再利用相比,这项研究强调了这种处理策略的优越性。