Institut Charles Sadron, CNRS UPR 22, Université de Strasbourg, Strasbourg, France.
J Chem Phys. 2017 Apr 14;146(14):144502. doi: 10.1063/1.4979720.
The physics of simple fluids in the hydrodynamic limit and notably the connection between the proper microscopic scales and the macroscopic hydrodynamical description are nowadays well understood. In particular, the three peak shape of the dynamical structure factor S(k,ω) is a universal feature, as well as the k-dependence of the peak position (∝k) and width ∝k, the latter accounting for the sound attenuation rate. In this paper, we present a theoretical model of monodisperse fluid, whose interactions are defined via the Voronoi tessellations of the configurations [called the Voronoi liquid and first studied in Ruscher et al., Europhys. Lett. 112, 66003 (2015)], which displays at low temperatures a marked violation of the universal features of S(k,ω) with a sound attenuation rate only ∝k. This anomalous behaviour, which apparently violates the basic symmetries of the liquid state, is traced back to the existence of a time scale which is both short enough for the viscoelastic features of the liquid to impact the relaxational dynamics and however long enough for the momentum diffusion to be substantially slower than the sound propagation on that characteristic time.
简单流体的流体力学极限中的物理学,特别是微观适当尺度与宏观流体力学描述之间的联系,如今已经得到很好的理解。特别是,动态结构因子 S(k,ω)的三个峰值形状是一个普遍特征,以及峰值位置的 k 依赖性(∝k)和宽度∝k,后者解释了声音衰减率。在本文中,我们提出了一种单分散流体的理论模型,其相互作用通过配置的 Voronoi 镶嵌来定义[称为 Voronoi 液体,最早在 Ruscher 等人的研究中进行了研究,Europhys. Lett. 112, 66003 (2015)],该模型在低温下表现出对 S(k,ω)的普遍特征的明显违反,其声音衰减率仅∝k。这种异常行为显然违反了液体状态的基本对称性,可追溯到存在一个时间尺度,该时间尺度既足够短,以至于液体的粘弹性特征会影响松弛动力学,又足够长,以至于动量扩散在该特征时间上明显慢于声传播。