Hain Tobias M, Klatt Michael A, Schröder-Turk Gerd E
Institut für Mathematik, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam OT Golm, Germany.
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
J Chem Phys. 2020 Dec 21;153(23):234505. doi: 10.1063/5.0029301.
The quantizer problem is a tessellation optimization problem where point configurations are identified such that the Voronoi cells minimize the second moment of the volume distribution. While the ground state (optimal state) in 3D is almost certainly the body-centered cubic lattice, disordered and effectively hyperuniform states with energies very close to the ground state exist that result as stable states in an evolution through the geometric Lloyd's algorithm [M. A. Klatt et al. Nat. Commun. 10, 811 (2019)]. When considered as a statistical mechanics problem at finite temperature, the same system has been termed the "Voronoi liquid" by Ruscher, Baschnagel, and Farago [Europhys. Lett. 112, 66003 (2015)]. Here, we investigate the cooling behavior of the Voronoi liquid with a particular view to the stability of the effectively hyperuniform disordered state. As a confirmation of the results by Ruscher et al., we observe, by both molecular dynamics and Monte Carlo simulations, that upon slow quasi-static equilibrium cooling, the Voronoi liquid crystallizes from a disordered configuration into the body-centered cubic configuration. By contrast, upon sufficiently fast non-equilibrium cooling (and not just in the limit of a maximally fast quench), the Voronoi liquid adopts similar states as the effectively hyperuniform inherent structures identified by Klatt et al. and prevents the ordering transition into a body-centered cubic ordered structure. This result is in line with the geometric intuition that the geometric Lloyd's algorithm corresponds to a type of fast quench.
量化器问题是一个镶嵌优化问题,即确定点配置,使得Voronoi单元使体积分布的二阶矩最小化。虽然三维中的基态(最优态)几乎肯定是体心立方晶格,但存在能量非常接近基态的无序且有效超均匀态,这些态是通过几何劳埃德算法演化得到的稳定态[M. A. Klatt等人,《自然通讯》10, 811 (2019)]。当被视为有限温度下的统计力学问题时,同一系统被鲁舍尔、巴施纳格尔和法拉戈称为“Voronoi液体”[《欧洲物理快报》112, 66003 (2015)]。在这里,我们特别关注有效超均匀无序态的稳定性,研究Voronoi液体的冷却行为。作为对鲁舍尔等人结果的证实,我们通过分子动力学和蒙特卡罗模拟观察到,在缓慢的准静态平衡冷却过程中,Voronoi液体从无序构型结晶为体心立方构型。相比之下,在足够快的非平衡冷却过程中(不仅仅是在最大快速淬火的极限情况下),Voronoi液体采用与克拉特等人确定的有效超均匀固有结构相似的状态,并阻止向体心立方有序结构的有序转变。这一结果符合几何直觉,即几何劳埃德算法对应于一种快速淬火。