DeGiuli Eric, Laversanne-Finot Adrien, Düring Gustavo, Lerner Edan, Wyart Matthieu
Center for Soft Matter Research, New York University, 4 Washington Place, New York, NY 10003, USA.
Soft Matter. 2014 Aug 14;10(30):5628-44. doi: 10.1039/c4sm00561a.
Connectedness and applied stress strongly affect elasticity in solids. In various amorphous materials, mechanical stability can be lost either by reducing connectedness or by increasing pressure. We present an effective medium theory of elasticity that extends previous approaches by incorporating the effect of compression, of amplitude e, allowing one to describe quantitative features of sound propagation, transport, the boson peak, and elastic moduli near the elastic instability occurring at a compression ec. The theory disentangles several frequencies characterizing the vibrational spectrum: the onset frequency where strongly-scattered modes appear in the vibrational spectrum, the pressure-independent frequency ω* where the density of states displays a plateau, the boson peak frequency ωBP found to scale as , and the Ioffe-Regel frequency ωIR where scattering length and wavelength become equal. We predict that sound attenuation crosses over from ω(4) to ω(2) behaviour at ω0, consistent with observations in glasses. We predict that a frequency-dependent length scale ls(ω) and speed of sound ν(ω) characterize vibrational modes, and could be extracted from scattering data. One key result is the prediction of a flat diffusivity above ω0, in agreement with previously unexplained observations. We find that the shear modulus does not vanish at the elastic instability, but drops by a factor of 2. We check our predictions in packings of soft particles and study the case of covalent networks and silica, for which we predict ωIR ≈ ωBP. Overall, our approach unifies sound attenuation, transport and length scales entering elasticity in a single framework where disorder is not the main parameter controlling the boson peak, in agreement with observations. This framework leads to a phase diagram where various glasses can be placed, connecting microscopic structure to vibrational properties.
连通性和外加应力对固体的弹性有强烈影响。在各种非晶材料中,机械稳定性可能会因连通性降低或压力增加而丧失。我们提出了一种弹性有效介质理论,该理论通过纳入压缩幅度为e的影响扩展了先前的方法,使人们能够描述在压缩量ec处发生弹性失稳附近的声传播、输运、玻色子峰和弹性模量的定量特征。该理论区分了表征振动谱的几个频率:振动谱中强散射模式出现的起始频率、态密度呈现平台的与压力无关的频率ω*、发现按比例缩放的玻色子峰频率ωBP以及散射长度和波长相等的伊夫琴-雷格尔频率ωIR。我们预测,在ω0处声衰减从ω(4)行为转变为ω(2)行为,这与玻璃中的观测结果一致。我们预测,频率依赖的长度尺度ls(ω)和声速ν(ω)表征振动模式,并且可以从散射数据中提取。一个关键结果是预测在ω0以上扩散率是平坦的,这与先前无法解释的观测结果一致。我们发现剪切模量在弹性失稳时不会消失,但会下降一个因子2。我们在软颗粒堆积中检验了我们的预测,并研究了共价网络和二氧化硅的情况,对于它们我们预测ωIR≈ωBP。总体而言,我们的方法在一个单一框架中统一了声衰减、输运和进入弹性的长度尺度,在这个框架中无序不是控制玻色子峰的主要参数,这与观测结果一致。这个框架导致了一个相图,各种玻璃可以置于其中,将微观结构与振动性质联系起来。