Biomedical Image Analysis Group, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK.
Biomedical Image Analysis Group, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK.
Neuroimage. 2018 Apr 15;170:5-30. doi: 10.1016/j.neuroimage.2017.04.014. Epub 2017 Apr 13.
The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously.
宏观连接组学阐明了大脑区域通过结构连接或功能耦合来执行特定认知任务的途径。它体现了将大脑内的所有连接表示为网络并理解为网络的概念,而大脑细分为相互作用的功能单元是其架构固有的。因此,网络节点的定义是连接网络分析中最关键的步骤之一。尽管基于细胞构筑或解剖结构的大脑图谱长期以来一直用于该任务,但连接驱动的方法直到最近才出现,旨在描绘更均匀和功能更一致的区域。本研究对蓬勃发展的大脑分割领域中提出的解剖学、连接驱动和随机分割方法进行了系统比较。使用来自人类连接组计划的静息态功能磁共振成像数据和文献中研究的大量定量评估技术,我们在不同分辨率下评估了 10 个个体水平和 24 个组水平的分割方法。我们从四个不同方面评估分割的准确性:(1)在不同采集和组之间的可重复性,(2)与基础连接数据的保真度,(3)与 fMRI 任务激活、髓鞘图和细胞构筑区域的一致性,以及(4)网络分析。对在个体和组水平生成的不同分割的广泛评估突出了各种方法的优缺点,并旨在根据手头的任务为分割技术和分辨率的选择提供指导。本研究的结果表明,没有一种最优的方法能够同时解决这一努力中面临的所有挑战。
Magn Reson Imaging. 2016-2
Neuroimage. 2017-9-6
Neuroimage. 2017-7-14
Neuroimage. 2021-2-15
Brain Connect. 2020-5
IEEE Trans Biomed Eng. 2016-12
Imaging Neurosci (Camb). 2024-12-20
Imaging Neurosci (Camb). 2024-8-19
Imaging Neurosci (Camb). 2024-4-8
Netw Neurosci. 2025-4-30
J Neuroeng Rehabil. 2025-4-7