文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类大脑图谱:对人类大脑皮层分割方法的系统比较。

Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.

机构信息

Biomedical Image Analysis Group, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK.

Biomedical Image Analysis Group, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK.

出版信息

Neuroimage. 2018 Apr 15;170:5-30. doi: 10.1016/j.neuroimage.2017.04.014. Epub 2017 Apr 13.


DOI:10.1016/j.neuroimage.2017.04.014
PMID:28412442
Abstract

The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously.

摘要

宏观连接组学阐明了大脑区域通过结构连接或功能耦合来执行特定认知任务的途径。它体现了将大脑内的所有连接表示为网络并理解为网络的概念,而大脑细分为相互作用的功能单元是其架构固有的。因此,网络节点的定义是连接网络分析中最关键的步骤之一。尽管基于细胞构筑或解剖结构的大脑图谱长期以来一直用于该任务,但连接驱动的方法直到最近才出现,旨在描绘更均匀和功能更一致的区域。本研究对蓬勃发展的大脑分割领域中提出的解剖学、连接驱动和随机分割方法进行了系统比较。使用来自人类连接组计划的静息态功能磁共振成像数据和文献中研究的大量定量评估技术,我们在不同分辨率下评估了 10 个个体水平和 24 个组水平的分割方法。我们从四个不同方面评估分割的准确性:(1)在不同采集和组之间的可重复性,(2)与基础连接数据的保真度,(3)与 fMRI 任务激活、髓鞘图和细胞构筑区域的一致性,以及(4)网络分析。对在个体和组水平生成的不同分割的广泛评估突出了各种方法的优缺点,并旨在根据手头的任务为分割技术和分辨率的选择提供指导。本研究的结果表明,没有一种最优的方法能够同时解决这一努力中面临的所有挑战。

相似文献

[1]
Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.

Neuroimage. 2017-4-13

[2]
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

Magn Reson Imaging. 2016-2

[3]
Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics.

Hum Brain Mapp. 2021-4-1

[4]
A flexible graphical model for multi-modal parcellation of the cortex.

Neuroimage. 2017-9-6

[5]
Groupwise whole-brain parcellation from resting-state fMRI data for network node identification.

Neuroimage. 2013-6-4

[6]
Functional parcellation using time courses of instantaneous connectivity.

Neuroimage. 2017-7-14

[7]
Spatially constrained hierarchical parcellation of the brain with resting-state fMRI.

Neuroimage. 2013-3-21

[8]
Parcellation of the human amygdala using recurrence quantification analysis.

Neuroimage. 2021-2-15

[9]
Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.

Brain Connect. 2020-5

[10]
Inferring Individual-Level Variations in the Functional Parcellation of the Cerebral Cortex.

IEEE Trans Biomed Eng. 2016-12

引用本文的文献

[1]
Direct segmentation of cortical cytoarchitectonic domains using ultra-high-resolution whole-brain diffusion MRI.

Imaging Neurosci (Camb). 2024-12-20

[2]
The engagement of the cerebellum and basal ganglia enhances expertise in a sensorimotor adaptation task.

Imaging Neurosci (Camb). 2024-8-19

[3]
Influence of atlas-choice on age and time effects in large-scale brain networks in the context of healthy aging.

Imaging Neurosci (Camb). 2024-4-8

[4]
A Cerebellar Partitioning Method Using Spectral Clustering With Optimized Nonlinear Functional Connectivity.

Hum Brain Mapp. 2025-7

[5]
Multilayer network analysis across cortical depths in 7-T resting-state fMRI.

Netw Neurosci. 2025-4-30

[6]
Modelling low-dimensional interacting brain networks reveals organising principle in human cognition.

Netw Neurosci. 2025-5-8

[7]
Precision neuroregulation combining liquid metal and magnetic stimulation.

J Neuroeng Rehabil. 2025-4-7

[8]
Systematic bias in surface area asymmetry measurements from automatic cortical parcellations.

bioRxiv. 2025-3-26

[9]
The Impact of Atlas Parcellation on Functional Connectivity Analysis Across Six Psychiatric Disorders.

Hum Brain Mapp. 2025-4-1

[10]
A network correspondence toolbox for quantitative evaluation of novel neuroimaging results.

Nat Commun. 2025-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索