Suppr超能文献

基于集合聚类的连接驱动脑区划分优化。

Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.

机构信息

Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.

Higher School of Economics, Moscow, Russia.

出版信息

Brain Connect. 2020 May;10(4):183-194. doi: 10.1089/brain.2019.0722.

Abstract

This work addresses the problem of constructing a unified, topologically optimal connectivity-based brain atlas. The proposed approach aggregates an ensemble partition from individual parcellations without label agreement, providing a balance between sufficiently flexible individual parcellations and intuitive representation of the average topological structure of the connectome. The methods exploit a previously proposed dense connectivity representation, first performing graph-based hierarchical parcellation of individual brains, and subsequently aggregating the individual parcellations into a consensus parcellation. The search for consensus-based on the hard ensemble (HE) algorithm-approximately minimizes the sum of cluster membership distances, effectively estimating a pseudo-Karcher mean of individual parcellations. Computational stability, graph structure preservation, and biological relevance of the simplified representation resulting from the proposed parcellation are assessed on the Human Connectome Project data set. These aspects are assessed using (1) edge weight distribution divergence with respect to the dense connectome representation, (2) interhemispheric symmetry, (3) network characteristics' stability and agreement with respect to individually and anatomically parcellated networks, and (4) performance of the simplified connectome in a biological sex classification task. Ensemble parcellation was found to be highly stable with respect to subject sampling, outperforming anatomical atlases and other connectome-based parcellations in classification as well as preserving global connectome properties. The HE-based parcellation also showed a degree of symmetry comparable with anatomical atlases and a high degree of spatial contiguity without using explicit priors.

摘要

这项工作旨在构建一个统一的、拓扑最优的基于连接的大脑图谱。所提出的方法在没有标签一致性的情况下聚合来自个体分割的集成分区,在充分灵活的个体分割和连接组的平均拓扑结构的直观表示之间取得平衡。该方法利用了先前提出的密集连接表示,首先对个体大脑进行基于图的层次分割,然后将个体分割合并为共识分割。基于硬集合(HE)算法的共识搜索——有效地估计个体分割的伪 Karcher 均值,从而最小化聚类成员距离的总和。在人类连接组计划数据集上评估所提出的分割方法的计算稳定性、图结构保留和简化表示的生物学相关性。这些方面是通过以下方式评估的:(1)相对于密集连接表示的边缘权重分布发散,(2)半球间对称性,(3)个体和解剖分割网络的网络特征稳定性和一致性,以及(4)简化连接组在生物学性别分类任务中的性能。集合分割在对受试者采样具有高度稳定性,在分类方面优于解剖图谱和其他基于连接组的分割,并且保留了全局连接组属性。基于 HE 的分割还表现出与解剖图谱相当的对称性和高度的空间连续性,而无需使用显式先验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0a4/7247040/e298e25ebd57/brain.2019.0722_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验